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ADVERTISEMENT.

In connection with the system of meteorological observations established by

the Smithsonian Institution about 1850, a series of meteorological tables was

compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was pub-

lished in 1852 as a volume of the Miscellaneous Collections.

A second edition was published in 1857, and a third edition, with further

amendments, in 1859.

Though primarily designed for meteorological observers reporting to the

Smithsonian Institution, the tables were so widely used by meteorologists and

physicists that, after twenty-five years of valuable service, the work was again re-

vised, and a fourth edition was published in 1884.

In a few years the demand for the tables exhausted the edition, and it appeared

to me desirable to recast the work entirely, rather than to undertake its revision

again. After careful consideration I decided to publish the new work in three

parts : Meteorological Tables, Geographical Tables, and Physical Tables, each

representative of the latest knowledge in its field, and independent of the others

;

but the three forming a homogeneous series.

Although thus historically related to Doctor Guyot's Tables, the present work

is so entirely changed with respect to material, arrangement, and presentation,

that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological

Tables) appeared in 1893. The present volume, forming the second of the

series, the Geographical Tables, has been prepared by Professor R. S. Woodward,

formerly of the United States Coast and Geodetic Survey, but now of Columbia

College, New York, who has brought to the work a very wide experience both in

field work and in the reduction of extensive geodetic observations.

S. P. Langley, Secretary.



PREFACE.

In the preparation of the following work two difficulties of quite different

kinds presented themselves. The first of these was to make a judicious selec-

tion of matter suited to the needs of the average geographer, and at the same

time to keep the volume within prescribed limits. Of the vast amount of

material available, much must be omitted from any work of limited dimen-

sions, and it was essential to adopt some rule of discrimination. The rule

adopted and adhered to, so far as practicable, was to incorporate little material

already accessible in good form elsewhere. Accordingly, while numerous ref-

erences are made in the volume to such accessible material, an attempt has

been made wherever feasible to introduce new matter, or matter not hitherto

generally available.

The second difficulty arose from the present uncertainty in the relation of the

British and metric units of length, or rather from the absence of any generally

adopted ratio of the British yard to the metre. The dimensions of the earth

adopted for the tables are those of General Clarke, published in 1866, and now

most commonly used in geodesy. These dimensions are expressed in English

feet, and in order to convert them into metres it is necessary to adopt a ratio of

the foot to the metre. The ratio used by General Clarke, and hitherto gener-

ally used, is now known to be erroneous by about one one hundred thousandth

part. The ratio used in this volume is that adopted provisionally by the Office

of Standard Weights and Measures of the United States and legalized by Act

of Congress in 1866. But inasmuch as a precise determination of this ratio is

now in progress under the auspices of the International Bureau of Weights and

Measures, and inasmuch as the value for the ratio found by this Bureau will

doubtless be generally adopted, it has been thought best in the present edition

to restrict quantities expressed in metric measures to limits which will require

no change from the uncertainty in question. In conformity with this decision

the dimensions of the earth are given in feet only, and, with a few unimportant

exceptions, to which attention is called in the proper places, tables giving quan-

tities in metres are limited to such a number of figures as are definitely known.



VI PREFACE.

It is a matter of regret that, owing to the cause just stated, less prominence

has been given in the tables to metric than to British units of length. On the

other hand, it seems probable that the more general use of British units will

meet the approval of the majority of those for whose use the volume is designed.

The introductory part of the volume is divided into seven sections under the

heads, Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of

Errors, and Explanation of Source and Use of Tables, respectively. In pre-

senting the subjects embraced under the first six of these headings an attempt

was made to give only those features leading directly to practical applications

of the principles involved. It is hoped, however, that enough has been given of

each subject to render the work of value in a broader sense to those who may

desire to go beyond mere applications.

The most of the calculations required in the preparation of the tables were

made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work

was done with skill and fidelity, and it is believed that the systematic checks

applied by them have rendered the tables they computed entirely trustworthy.

Mention of the particular tables computed by each of them is made in the

Explanation of Source and Use of Tables, where full credit is given also for

data not specially prepared for the volume.

The Appendix to the present volume is that prepared by Mr. George E. Cur-

tis for the Meteorological Tables. Its usefulness to the geographer is no less

obvious and general than to the meteorologist

The proofs have been read independently by Mr. Charles H. Kummell and

the editor. The plate proofs, also, have been read by the editor ; and while it

is difficult to avoid errors in a first edition of a work containing many formulas

and figures, it is believed that few, if any, important errata remain in this volume.

R. S. Woodward.
Columbia College, New York, N. Y., June 15, 1894.
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USEFUL FORMULAS.

I. Algebraic.

a. Arithmetic and geometric means. The arithmetic mean of n quanti-

ties a, b, c, ... is

-l-(«+ ^+ ,+ ...);

their geometric mean is

{abc.f.
A case of special interest is

b. Arithmetic progression. If a is the first term, and a-\-d, a-\- 2 d,

a+ 3 </, . . . are the successive terms, the «th or last term z is

zz= a -{- (n — i) d.

The sum s of the n terms of this series is

s:^\(a-\- z) n^ {a-{-\ (n — i) d} n

= {z — h(n — 1) d} n

c. Geometric progression. If a is the first term, and ar,ar^,.

successive terms, the «th or last term z is

z=^a r"-\

The sum of the n terms is

a (^— i) rz — a __ z (t^— i)

are the

s=
If

r—

I

r—

I

(r— i) r"-^

r < I and «= 00,

a

I — r

d. Sums of special series.

-\- 2 n = «(«-)- i)

,-\- {2 n— i) = n^

+ «" = ^ n (n -\- 1) (2 n -\- t)

-I-
«» = J „2 (« _|_ i)2

2+4+6+8+
1+3+5+7+
i'+ 2''+ 3*+ 4^+
i''+2''+3'+4''+



XIV USEFUL FORMULAS.

e. The binomial series and applications.

For a > b,

{a±by=a"±na''-'b+ '^
^^
~ "^ «— " l)"

For X <. 1,

, n(n— i) , ,
« (« — i) (« — 2) , ,{i±xf=i±nx +-^777-^ *' ± -^

riJT^
*+•••

l—X-\-X^ — S^-{-X^—...
1 -\- X



USEFUL FORMULAS. XV

g. Relations of natural logarithms to other logarithms.
B = base of any system,

N-=. any number,

L = log N\.o base B = log^iV^

/ = log iV^ to base e= log^iV:
Then

JV=/=B'^,
L = l log^« = il^og^B,

log£tf= i/loge^ = M, say, which is called the modulus of the system whose base
is B, In the common, or Briggean system,

^ = logio?= 0.43429448 ....

log IX. — 9.6377843 — 10.

2. Trigonometric Formulas.

a. Signs of trigonometric functions.

Function.



XVI USEFUL FORMULAS.

d. Formulas involving two angles.

sin (a ± j8) :^ sin a cos /8 ± cos a sin p,

cos (a ± ^) = COS a COS ;8 T sin u sin p.

tan (a ± yS) = (tan a ± tan /3)/(i T tan a tan ^),

cot (a ± /?) = (cot a cot /3 qp l)/(cOt a ± COt )8).

sin a -(- sin /3= 2 sin i(a -|- ;8) cos J(a — ;3),

sin a — sin j8= 2 cos J(a -f- iS) sin J(a — /3).

cos a+ cos j8= 2 cos J^(a -)- yS) COS J(a — j8),

cos a — COS /3^ — 2 sin J(a -|- j8) sin ^(a — fi).

sin (a ± B)
tan a ± tan S= ^^ ^,

'^ COS a COS /3

sin 08 ± o)
cot a ± cot S = ^ —i-^ sin a sin p

2 sin a sin /3= cos (a — yS) — cos (a -}- /8),

2 cos a cos P= cos (a — )8) + COS (a -j- ^),

2 sin a COS p= sin (« — )8) -)- sin (a -|- |8).

sin a+ sin S , , „, ,

,

„s

sin a I sin is
= t^" i(a+ ^) cot i(a - 13),

cos a+ cos B , / . «v

cosaIcosg =-"°tKa + ^)cotK°-^).

e. Formulas involving multiple angles.

sin 2 a= 2 sin a cos a,

sin 3 a = 3 sin a cos' a — sin° o.

cos 3 a := cos' a — 3 sin* a cos a.

2 sin" a = 2 cos" o— I,

sin a I — cos

t^"i"=i+COSa' sin

2 tan a
tan 2 a= :

—

«—> cot 2 a
I — tan"" a

Vl + cos aj



USEFUL FORMULAS.

g. Values of functions in series.

For X in arc the following series hold within the limits indicated,

*' x'^

'

sin « = a; — 2—I

6 ' 120 5040

cos X = I — 1-
2 24 720 '

'

— CO <, X <. -\- CO.

tan :*r= « + J ^» + T% ^5 ^ gVj ^' + • . . ,

sec a; = I + i a;" + ^ a?« + t¥s *"+ • • •

»

cot X= l(i - i x^ - ^ x' - ^i-s x'^ - . . .),

cosec a;= ^ (i + i
^'^ + 3I5 ^* + j^^ x" -\- . . .),

TT < a; < -)- TT.

arc sin X = X -\- i x^ -{- ^^ x^ -{- ^i^-s x'' -\- . . .
,

yO /yiO A"7 /yS

arc tan ;c = ;c ....
3 ' 5 7^9 '

— I < X < -\- I.

« =: sin ^ 4" i sin' x -{- ^-^ sin" x -\- yf ^j sin' x -{-.,,

,

— i-ir<x<-{-^7r.

X= tan X — ^ tan' * + J^
tan" * — ^ tan' ^ + . . .

,

-iir<^< + i7r.

log sin x = ]ogx- ii.(ix^-{- tIt ^^+ ^i^s «» + ...),

a; positive and < ir,

/t = modulus of common logarithms. See p. xv.

log tan a; = log a: + /i (^ x"" -\- ^^ x^ + ^f§5 x''-\-...),

X positive and < ^ ir.

h. Conversion of arcs into angles and angles into arcs.

Denote by x°, id, and x" respectively the angle (in degrees, minutes, or sec-

onds) corresponding to the arc x. Then by equality of ratios

360° 360 X 60' 360 X 60 X 60" _ 2_^

whence
180°

X ,

TT

180 X 60'

.X' z=. X
180 X 60 X 60"



Then

XVUt USEFUL FORMULAS.

Put 180° = p = number of degrees in the radius,

—— = p' = number of minutes in the radius,

180 X 60 X 60" „ , , J .t, J-= p = number of seconds in the radius.

x° =^ X p°, a/ z= X p', x" = X p".

p° = S7-°29S779S. log p° = 1.75812263,

p' = 3437-'74677, log p' = 3-53627388,

p"= 2o6264."8o6, log p" = 5.31442513.

3. Formulas for Solution of Plane Triangles.

a, b, c = sides of triangle,

a, p,y^ angles opposite to a, 6, c, respectively,

A ^ area of triangle,

r= radius of inscribed circle,

H = radius of circumscribed circle,

s= ^ {a -\- b -\- c).

2 R.
sin a sin /3 sin y

'

a= b cos y -\- c cos p, b z= c cos a-\- a cos y, c^ a cos ^ -\- b cos a,

/-= 4 i? sin J a sin J ^ sin i y = r^^-

{a + b) cos i (a + y3) = (T cos i (a — p),

{a — b) sin J (a -j- j8) = ^ sin ^ (a — j8).

g -|~ '^ tan J (a -|- yS) tan I y
a — b tan J (a— 18) fan J (a — /3)'

a='= ,5"+ f' - 2 (J <r cos o = (^ + <:)=' - 4 ^ f cos'' J a.

sinia=y/£EiI£ZI), cosia=^/£^£).

tan i a= y/^^iHlEZ) _ ^1
J (j — a) J — a

' {s-a){s- b) (s ^r7)
_

''''' sin S sin y „, . . „ .A ^habsm y = ; ^ 2. R^ sin o sm R sin v
"^ • 1 sin a r^ /

•=v/i

= ?^ cot J a cot
J- yS cot J y= \/ s (s — a) (s — b) (s — c)

=zrs = \abc JR.



In right angled triangles let

Then

USEFUL FORMULAS.

a= altitude,

i> =: base,

e = hypothenuse,

y= 90°.

a = c sin a= ^ cos ^ = 6 tan a= l> cot /?,

b = c sin 13 = c cos a = a tan ^= 3 cot a.

^ = ^a^^J^a^ cot a^ ^6" tan a= :| r" sin 2 a.

Tablefor solution of oblique triangles.

XIX

Given.



XX USEFUL FORMULAS.

4. Formulas for Solution of Spherical Triangles.

a. Right angled spherical triangles.

a, b, c= sides of triangle, c being the hypotenuse,

a, /3, y^ angles opposite to a, b, c, respectively,

1= 9°°-

sin « = sin ^ sin a, sin b = sia ^ sin ^,

tan a = tan c cos y3, tan b= tan c cos a,

= sin ^ tan a, := sin « tan jS-j

cos a= cos a sin )8, cos ;8^ cos ^ sin a

;

cos f ^ cos « cos (5= cot a cot jS.

b. Oblique angled triangles.

a, b, c= sides of triangle,

a, p, y= angles opposite to a, b, c, respectively,

s= )^ {a -{- b -\- c),

<r=i(a + ^+ y),

«= a-}-)8-|-y — 180° = spherical excess,

S= surface of triangle on sphere of radius r.

sin a sin b sin c

sin a sin )8 sin y'

cos a= cos ^ cos ^ -|- sin b sin ^ cos a,

. „ ,
— cos <T cos (cr — a) „ , COS (ff — S) COS ((T — y)

^^^'^'^ =
sin ^ sin y

' cosH«=
sin ^ sin y

^'

, , — COS o- cos (cr — a)
tan'' * ff

= 7 ox ^^7 ^•
^ COS (o- — p) COS (o- — y)

. . ,
sin (f — S) sin (j — (t) „ , sin s sin (j — a)

sin^ i a= ^^-j

—

J—.
—^^ -, CDs'* i a= :

—

tA ^,
^ sin * sin ^ 2

gjjj 3 gjjj ^

„ , sin (s — 3) sin (s — c)
tan'^ i a= ^ / \ •" sin s sin (f —a)

cot J « cot i ^+ COS y
cot * e = ——

»

^ sin y

tan* i £= tan J s tan ^ (x — a) tan J (j — ^) tan i (j — c).

Napier's analogies.

.. , / 1 .N_ cos 1^ (a — /3) sin 4- (a — fi)
t^"^.('^ + ^)- C0sHa+ ^)

'^" ^'' ^^'^ * ('^ - ^)= sinHa+g ^^"^^'

. , / , o\ cos\{a — b') , sin i (a — 3)
tanH'^+ ^)- cosH«+^r°^^^'

tanH'^-^)= 3i4^^^3^ cot^y.
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Gauss's formulas.

cos i (a+ /8) cos i <r= cos i (a + ^) sin \ y,

sin i (a+ j8) cos \ c= q.o% \ {a — V) cos ^ y,

cos i (a — ;8) sin J ^ = sin i (a + ^) sin J y,

sin i (a — j8) sin J f = sin i (a — i^) cos \ y.

5. Elementary Differential Formulas.

a. Algebraic.

«, v,w,...-^ variables subject to differentiation,

a, b, c, . . . = constants.

d{a -{-«) = du, d(a u)-^a du,

d(u -\-v-\-w-\-..^ = du-\-dv-\-dw-\-...,

d(u v)-=iu dv -\-v du,

I du . dv . dw j^ \

it) = - du — u dv du u dv

fa -\- b u\ b k — a g
'^\F+g^)~{h+guf '^"-

. dv
dv^=. n v^-^ dv, dsv =

2 y'p

da"= «" log a dv, d^= ^ dv

(e = base of natural logarithms),

d log V= dv/v.

dF SF dF
dF{u, v,w.. .)=^ du-+^dv+^dw + . . .

.

b. Trigonometric and inverse trigonometric.

//sin X= cos X dx, dcos x = — sin x dx,

dtaxi X= sec^ x dx, dcot x= — cosec'^ x dx,

dsec X^ sec^ x sin x dx, (/cosec x =^— cosec'^ x cos x dx.

diog sin a; = cot ^ dx,
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6. Taylor's and Maclaurin's Series.

a. Taylor's series-

If u^f{x-\- K), any finite and continuous function oi x -\- h, h being an

arbitrary increment to x; and if dujdx, d^uldx\ . , . are finite and deter-

minate,

u =fix + h) =fix) +/' {x) h +/" ix) - +/'" (^) ^^^+ . . . .

where fix),/' (x), f" (x), . . . are the values of f(x -\- K), dujdx, d^ujdx\ . . .

when ^ = o. This is Taylor's series or theorem. The remainder after the first

n terms in h is expressed by the definite integral

^ ^p + ''(.x-\-h-z)^dz.
I. 2. 3 ... « J-' ^ '

'

o

b. Maclaurin's series.

If in Taylor's series we make x^=.o, and h=. x, the result is

u ^f{x) =/(o) +/' (o) X +/" (o) -^ +/'" (o)-^+ . . .
,

where/(o),/' (o), /" (o), ... are the values oif{x), dujdx, d'^ujdx^, . . . when
X = o. This is Maclaurin's series or theorem. The remainder after the first «
terms in x is expressed by the definite integral

1.2.3
o

—
J/«

+ i(^-0)a» dz.

c. Example of Taylor's series.

u =f(x + /5) = log {x + h).

fix) = log X,

f{x)=.^x-\dx X -\- h'

dx" {x-\- Kf J (x)—-x
,

Hence for common logarithms, ju. being the modulus,

log (x + A) = log a: + /* (x-^ A-ix-^A^-^-ix-^k"-.. .),

and the sum of the remaining terms is



USEFUL FORMULAS. XXUl

Since x is the least value oi{x -\- h — z) within the limits of this integral, the

sum of the remaining terms is negative, and numerically

(D*
If, for example, {hjx) = i/ioo, the remainder in question is less than

\ X 0.434 X io~*, or about one unit in the ninth place of decimals.

d. Example of Maclaurin's series.

u z=.f{x) = sin X.

/(o)=o,
du
Tx = ^°' *'
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Since d(uv) = udv -f- vdu,

I
udv= uv — I vdu ; and

if « = f(x) and v:=<j> (x),

f/i.)
^) d. =/(.) .^ (.) -

J.^
(.)^) </. *

Jdxj/ix, y) dy =^dy^f{x,y) dx.

\dx \f(x) dx= x I fix) dx— I x/(x) dx.

J n-\-i ^

/^= log.t + C, J^= ^-xiog(« + 3.).

Jl^= -l + ^' J (« + ^^)^= - K« + ^•^)
"•" ^*

/l^^a = arc tan ^ + C, J ^^^= arc cot « + C.

—
. .

3
= (^^)~^ arc tan (V«)* « 4- C, for a and 5 both positive,

= (al>)~^ arc cot (^/«)* x -\- C, for a and ^ both negative,

(_ ady — hx= i (- «*)"* log (_^^)i_[_^;t: + C, for «^ negative.

C(a + xydx= iix(a + xj+ ^ « log {^ + («+ xj} + C.

C(a^ — xf dx=\x{a'- x'y + i a' arc sin
f + C.

!"(« + ^«)* dx= l{a-\- bx)ilb + C.

* This is the formula for integration by parts.

t Natural logarithms are used in this and the following integrals. For relation of natural to

common logarithms see section i, g.
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i (a -\- 2 l>x -\- c«")* dx= ^ (6 -\- ex) (a-\- 2 dx-\- cx^fc

-\.\{ac — F)lc C(a -\-2bx-\- cxF)-^ dx+ C.

C(a + 6x)-i dxz=2(a-\- bxfib + C.

Jia+ ^x) (a + dx)-i dx=^(3ai-2aP-\-l3 bx) {a + bxyilr"+ C.

I
(a' — a;')"' dx=z ±. arc sin—(- C,

= T arc cos " + C,

/a4-x\i
, „= 2 arc tan I

—— I + C.
\a — x) '

C{a + xY^ dx= log {x-\-(a-\- xj} + C,

= ilog
a: + (a + ^'')*

ar — (a x'y:, + c.

C(a -{-2 bx-\- cx^-i dx= "7^ log {b-{-cx-\- (ac-\- bcx+ ^x'f)-\- C, for <r > o,

I
. b+ cx , „ ,- -^ arc sin (^—^^+ C, for ^ <o.

(V<fe= «^/log a + C, |V(/x= e»^+ C.

I
log a; i/a:= :» log X — x-\- C.

J(log ^)» x-^dx=^^ (log *)» + 1 + (7.

isin X dx= — cos :« -|- C, I cos x dx=zsmx-\- C.

I sin' X dx=z^ X ~ \ sin 2 x-\- C, I cos'' ^ ^j;= ^ a; -|- J sin 2 x-\- C.

I
tan a: ^jc= — log cos x -\- C, j

cot ^ i/a:= log sin x-\-C.

/dx C dx
^j^= logtani^+C, j53J^= logtani(^+i,r)+C.

' r dx , _ C dx
, „

I -=-5— ^ — cot a:+ C, / —5—= tan x + C.
J sin'' X J COS'' ;«:

'

„, . , , a sin bx — b cos ^:k ^ , _«" sin bx dx= .2 I ^i
«°*+ C.

«" cos bx dx=

a''4-^»

a cos ^^ -|- ^ sin ^:c

d'-\-b^
e""+ C.

I
arc sin x dx^ x arc sin « ± (i — ^'+ C.

I arc cos x dx= x arc cos a: T (i — •«0* + C.

I
arc tan xdx^x arc tan a; — J log (i -\- x^) -\- C.

j arc cot X dx=zx arc cot :«:-(- i log (i -(- «°) -}- C.
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b. Definite Integration.

n b c n

\ ii> (x) dx == I <^ {x) dx -\- \ <^ (x) dx -\- . . . I
<i,

(x) dx.

a b

b a

\^(x)dx=. — \^ (x) dx.

a b

a a

\<^ (x) dx=l 4> ((i — x) dx.

o o

If tf) (x) := <j> (— x), an " even function " of x,

a o a

I ^ (x) dx=^i <j} (x) dx= ^ j <j> (x) dx.

o —a —a

li fl> (x) = — fji (— x), an " odd function " of x,

o a -\-a

l<j> (x) dx=z\<ji (x) dx, and
J

<^ (x) dx= o.

—a o —a

If A be the greatest and jB the least value of (jt (x) within the limits a and b,

b

A(b-d)> C<i> {x) dx> £ (b- a),

a

a formula useful in determining approximate values of integrals. See, e. g.,

section 6, d.

b

If « = \^{x) dx,

a

O

I 00

/ dx _ r_^_—
Io

00
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O

00

OO 00

fe
-^' dx = \ Vtt, Ce-"""dx=\ V(jr/a«).

o o

Ce-"'^' x^^'dxz^ 1.3.5... (2 n - 1) a" (2 a)-'^-^^Wv.

o

00

Ce-"' «-» dx= V(Tr/»).

o

I
sill mx sin nx dx =z | cos mx cos «a: ^a;^ o.

o o

when m and « are unequal integers.

IT

J sin »2a; cos nx dx=
^ _ i> for m and « integers and m — n odd,

o

= o, for m and « integers and m— n even.

IT TT

I
sin° »«;»: </jc =

I
cos* mx aJr= J ir, for »« an integer.

o

gir Jir I

I
sin" X dx =z t cos" a; <& =:

j
(i — a^ * ^""'^ </«,00 o

00 00

/sin a; , /'cos x , t, , ^

o o

00 00

\sva. X? dx -=^1 cos ;»^ ^;c= J s/ivli).

o o

00

P-«'
=:' cos 2<5^ ^a; = i tf

-<»"•)» V(5r/ff).

o

00

O
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I. Lines.

a. In a circle.

r == radius of circle,

c = length of any chord,

s = arc subtended by c,

a= angle corresponding to s,

h = height of arc s above c, or perpendicular distance from middle point of

arc to chord.

Circumference = 2 t r,

17= 3.14159265, log IT = 0.49 714987,

217^6.28318531, log 2 IT= 0.79817987.

c-^ 2 r sin \ a, s= ra.

Length of perpendicular from center on chord

= r cos \ a

ir{.-r(f.)-»(f,)*-^(^y-...}.

A = r (i — cos i a)

=: 2 r sin'' J a

= i.{0)-+*(O*+*(O'+...}-

=»?{+«©+}

b. In regular polygon.

r = radius of inscribed circle,

J?=z radius of circumscribed circle,

« = number of sides,

J = length of any side,

P = angle subtended by s,

p = perimeter of polygon.
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P= 7,60°In,

J= 2 r tan J^ = 2 ^ sin J /3,

p^=ns=^2ur tan \ ft= 2 n R sm \ p.

See table under c, below.

c. In ellipse.

a = semi-axis major,

b = semi-axis minor,

e = eccentricity = (i — d^/a^y,

P=^ perimeter of ellipse,

n=\a- b)l(a + b)

»2

XXIX

_ I — \/I - g"

4 + 8
^^ 64 ^

Distance from centre to focus == ae,

Distance from focus to extremity of major axis := a{\ — i).

Distance from focus to extremity of minor axis -^ a.

/>= :r («+ *) (i + i «= 4- ^ «^ + ^K «" + . . )
•=. It {a -\- b^ q, say, where q stands for the series in n. The values of q cor-

responding to a few values of n are:—

«
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c. Area of regular polygon.

A = area,

r, R=. radii of inscribed and circumscribed circles,

s= length of any side,

n ^ number of sides,

/3= angle subtended by j = 36o°/«.

A = nr^\xa.\^= \nR^sm.^= \ns^ cot \^.

Table of Values.

n
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Area of ellipse = Tr a d,

= TT a" cos ^, if tf= sin <ji.

f. Surface of sphere, etc.

r= radius of sphere,

^,, <^2^ latitudes of parallels bounding a zone,

£= spherical excess of a spherical triangle

= sum of spherical angles less i8o°,

Total surface = 4 tt r".

Surface of zone z=2 ir r^ (sin ^2 — sin <^i),

= 4 TT r" cos J (.^2 + <^i) sin i ((^2 — <^>

Surface of spherical triangle == r" «, for £ in arc,

= T^ ijp", for £ in seconds,

p" = 206 264.8", log p" = 5.31 442 513.

g. Surface of right cylinder.

r= radius of bases of cylinder,

A= altitude of cylinder.

Area cylindrical surface = 2 tt r A.

Total surface = 2 ir r (r -\- A).

h. Surface of right cone.

r= radius of base,

A= altitude,

J = slant height.

Conical surface z=Trrs= 'jrr(A^-\- r")*.

Total surface = tt r (s -\- r).

i. Surface of spheroid.

a, b= semi axes,

e = eccentricity = {(a -\- i) (a — b)Yla.

Surface of oblate spheroid = 2 ir a'' i i + log
{

I
\

= ^^ a' (i - i e' - ^ ^ - ^ e' - . . .).

Surface of prolate spheroid = 2 irab < (i— <?")* -\ [

= 4 ,r « 3 (i - J ^^ - ^ ^ - T-i-^
«' - . . . ).

* The logarithm in -this formula refers to the natural or "Napierian" system. For areas of

zones and quadrilaterals of an oblate spheroid, see pp. 1-lii.
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3. Volumes.

a. Volume of prism.

A = area of base, h ^ altitude, F= volume.

V=Ah.

For an oblique triangular prism whose edges a, b, c are inclined at an angle a

to the base,

F= \ {a \- b \- c) A €va. a.

h. Volume of pyramid.

A = area of base, A = altitude, F^ volume.

F= \Ah.

For a truncated pyramid whose parallel upper and lower bases nave areas Ai
and A^ respectively and whose distance apart is h,

F=iA (A,+ v/^2 A, + Ai).

The volume of a wedge and obelisk may be expressed by means of the volumes

of pyramids and prisms.

c. Volume of right circular cylinder.

r= radius of base, A = altitude, F= volume.

V= Trr^A.

5r= 3.14159 265, log 77= 0.49714987.

For an obliquely truncated cylinder (having a circular base) whose shortest and
longest elements are ^i and ^2 respectively,

r= i ,r r' (/I2+ A,).

For a hollow cylinder the radii of whose inner and outer surfaces are r^ and rj

respectively, and whose altitude is A,

d. Volume of right cone with circular base.

r= radius of base, h = altitude, F=: volume.

For a right truncated cone the radii of whose upper and lower parallel bases
are ri and r^ respectively, and whose altitude is h,

e. Volume of sphere and spherical segments.

r= radius of sphere, A = altitude of segment, F= volume.
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For the entire sphere

F"::= f T r°= 4.1888 /•' approximately,

(For IT and log ir see c above.)

For a spherical segment of height h

For a zone, or difference in volume of two segments whose altitudes are h-^ and

^2 respectively

V=iTr {h\— h\) — \it (h\ — t^

= i ,r A /^ (3 ^+ 3 Ai + A /5=),

Where ^-i and r^ are the radii of the bases of the zone and ^ h = h^ — hj,

t. Volume of ellipsoid.

a,b,c^ semi axes, Vz= volume.

V=. ^ir ab c.

, For an ellipsoid of revolution about

the a-axis, Fi= f n- a 3*,

the ^-axis, F= f tt «' &
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1. Standards of Length and Mass.

The only systems of units used extensively at the present day are the British

and metric. The fundamental units in these systems are those of time, length,

and mass. From these all other units are derived. The unit of time, the mean

solar second, is common to both systems.

The standard unit of length in the British system is the Imperial Yard, which

is defined to be the distance between two marks on a metallic bar, kept in the

Tower of London, whenj:he temperature of the bar is 62° F.

The standard unit of mass in the British system is the Imperial Pound Avoirdu-

pois. It is a cylindrical mass of platinum marked "P. S. 1844, i lb.," preserved

in the office of the Exchequer at Westminster.

In the metric system the standard unit of length is the Metre, now represented

by numerous platinum iridium Prototypes prepared by the International Bureau

of Weights and Measures.

The standard of mass in the metric system is the Kilogramme, now represented

by numerous platinum iridium Prototypes prepared by the International Bureau

of Weights and Measures.

Both systems of units have been legalized by the United States. Virtually, how-

ever, the material standards of length and mass of the United States are cer-

;ain Prototype Metres and certain Prototype Kilogrammes. The present status

of the two systems of units so far as it relates to the United States is set forth

in the following statement from the Superintendent of Standard Weights and

Measures, bearing the date April 5, 1893.

Fundamental Standards of Length and Mass.*

" While the Constitution of the United States authorizes Congress to ' fix the

itandard of weights and measures,' this power has never been definitely exer-

cised, and but little legislation has been enacted upon the subject. Washington

regarded the matter of sufficient importance to justify a special reference to it in

his first annual message to Congress (January, 1790), and Jefferson, while Secre-

tary of State, prepared a report at the request of the House of Representatives, in

which he proposed (July, 1790) 'to reduce every branch to the decimal ratio

already established for coins, and thus bring the calculation of the principal

affairs of life within the arithmetic of every man who can multiply and divide.'

The consideration of the subject being again urged by Washington, a committee

* Bulletin 26, U. S. Coast and Geodetic Survey. Washington : Government Printing Office,

1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geo-

detic Survey.
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of Congress reported in favor of Jefferson's plan, but no legislation followed.

In the mean time the executive branch of the Government found it necessary to

procure standards for use in the collection of revenue and other operations in

which weights and measures were required, and the Troughton 82-inch brass

scale was obtained for the Coast and Geodetic Survey in 1814, a platinum kilo-

gramme and metre, by Gallatin, in 182 1, and a Troy pound from London in 1827,

also by Gallatin. In 1828 the latter was, by act of Congress, made the standard

of mass for the Mint of the United States, and although totally unfit for such pur-

pose it has since remained the standard for coinage purposes.

" In 1830 the Secretary of the Treasury was directed to cause a comparison to

be made of the standards of weight and measure used at the principal custom-

houses, as a result of which large discrepancies were disclosed in the weights and

measures in use. The Treasury Department, being obliged to execute the consti-

tutional provision that all duties, imposts, and excises shall be uniform throughout

the United States, adopted the Troughton scale as the standard of length ; the

avoirdupois pound to be derived from the Troy pound of the Mint as the unit of

mass. At the same time the Department adopted the wine gallon of 231 cubic

inches for liquid measure and the Winchester bushel of 2 150-42 cubic inches for

dry measure. In 1836 the Secretary of the Treasury was authorized to cause a

complete set of all weights and measures, adopted as standards by the Depart-

ment for the use of custom-houses and for other purposes, to be delivered to the

Governor of each State in the Union for the use of the States respectively, the

object being to encourage uniformity of weights and measures throughout the

Union. At this time several States had adopted standards differing from those

used in the Treasury Department, but after a time these were rejected, and finally

nearly all the States formally adopted by act of legislature the standards which

had been put in their hands by the National Government. Thus a good degree

of uniformity was secured, although Congress had not adopted a standard or

mass or of length other than for coinage purposes as already described.

" The next and in rnany respects the most important legislation upon the subject

was the Act of July 28, 1866, making the use of the metric system lawful tlirough-

out the United States, and defining the weights and measures in common use in

"^terms of the units of this system. This was the first general legislation upon the

subject, and the metric system was thus the first, and thus far the only system

made generally legal throughout the country.

" In 1875 an International Metric Convention was agreed upon by seventeen

governments, including the United States, at which it was undertaken to establish

and maintain at common expense a permanent International Bureau of Weights

and Measures, the first object of which should be the preparation of a new inter-

national standard metre and a new international standard kilogramme, copies of

which should be made for distribution among the contributing governments.

Since the organization of the Bureau, the United Stales has regularly contributed

to its support, and in 1889 the copies of the new international prototypes were

ready for distribution. This was effected by lot, and the United States received

metres Nos. 21 and 27, and kilogrammes Nos. 4 and 20. The metres and kilo-

grammes are made from the same material, which is an alloy of platinum with ten

per cent of iridium.
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" On January 2, 1890, the seals which had been placed on metre No. 27 and

kilogramme No. 20, at the International Bureau of Weights and Measures near

Paris, were broken in the Cabinet room of the Executive Mansion by the Presi-

dent of the United States, in the presence of the Secretary of State and the

Secretary of the Treasury, together with a number of invited guests. They were

thus adopted as the National Prototype Metre and Kilogramme.

" The Troughton scale, which in the early part of the century had been tenta-

tively adopted as a standard of length, has long been recognized as quite un-

suitable for such use, owing to its faulty construction and the inferiority of its

graduation. For many years, in standardizing length measures, recourse to copies

of the imperial yard of Great Britain had been necessary, and to the copies of

the metre of the archives in the Office of Weights and Measures. The standard

of mass originally selected was likewise unfit for use for similar reasons, and

had been practically ignored.

"The recent receipt of the very accurate copies of the International Metric

Standards, which are constructed in accord, with the most advanced conceptions

of modern metrology, enables comparisons to be made directly with those stand-

ards, as the equations of the National Prototypes are accurately known. It has

seemed, therefore, that greater stability in weights and measures, as well as much
higher accuracy in their comparison, can be secured by accepting the international

prototypes as the fundamental standards of length and mass. It was doubtless

the intention of Congress that this should be done when the International Metric

Convention was entered into in 1875 ; otherwise there would be nothing gained

from the annual contributions to its support which the Government has con-

stantly made. Such action will also have the great advantage of putting us in

direct relation in our weights and measures with all civilized nations, most of

which have adopted the metric system for exclusive use. The practical effect

upon our customary weights and measures is, of course, nothing. The most care-

ful study of the relation of the yard and the metre has failed thus far to show

that the relation as defined by Congress in the Act of 1866 is in error. The
pound as there defined, in its relation to the kilogramme, differs from the impe-

rial pound of Great Britain by not more than one part in one hundred thousand,

an error, if it be so called, which utterly vanishes in comparison with the allow-

ances in all ordinary transactions. Only the most refined scientific research will

demand a closer approximation, and in scientific work the kilogramme itself is

now universally used, both in this country and in England.*

' Note.— Reference to the Act of i866 results in the establishment of the following :—
Equations,

3600
I yard = —-— metre.'

3937

I pound avoirdupois = — 7 kilo.

A more precise value of the English pound avoirdupois is ^. g^ kilo., differing from the above

by about one part in one hundred thousand, but the equation established by law is sufiSciently

accurate for all ordinary conversions.

As already stated, in work of high precision the kilogramme is now all but universally used,
and no conversion is required.
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" In view of these facts, and the absence of any material normal standards of

customary weights and measures, the Office of Weights and Measures, with the

approval of the Secretary of the Treasury, will in the future regard the Interna-

tional Prototype Metre and Kilogramme as fundamental standards, and the cus-

tomary units, the yard and the pound, will be derived therefrom in accordance

with the Act of July 28, 1866. Indeed, this course has been practically forced

upon this office for several years, but it is considered desirable to make this for-

mal announcement for the information of all interested in the science of metrology

or in measurements of precision.

T. C. Mendenhall,
Superintendent of Standard Weights and Measures.

" Approved

:

J. G. Carlisle,

Secretary of the Treasury.

April 5, 1893."

No ratios of the yard to the metre and of the pound to the kilogramme have as

yet been adopted by international agreement ; but precise values of these ratios

will doubtless be determined and adopted within a few years by the International

Bureau of Weights and Measures. In the mean time, it will suffice for most pur-

poses to use the values of the ratios adopted provisionally by the Office of Stand-

ard Weights and Measures of the United States. These values are—

I yard = \%%^ metres, or i metre = If SJ yards,

I pound = ^M5t kilogrammes, or i kilogramme ^ H8t§ pounds.

These ratios were legalized by Act of Congress in 1866. Expressed decimally

these values are *—
I yard = 0.914402 metres, i metre = 1.093 611 yards,

I pound = 0.45 359 kilogrammes, i kilogramme = 2.20462 pounds.

The above values of the relations of the standards of the British and Metric

systems of units are adopted in this work. Tables i and 2 give the equivalents

of multiples of the standard units and also equivalents of multiples of the derived

units of siirface and volume. These tables are published by the Office of Stand-

ard Weights and Measures of the United States, and are here republished by per-

mission of the Superintendent of that Office.

2. British Measures and Weights.

a. Linear measures.

The unit of linear measure is the yard. Its principal sub-multiples and multi-

ples are the inch ; the foot ; the rod, perch, or pole ; the furlong ; and the mile.

The following table exhibits the relations among these measures :
—

* The actual error of the relation of the yard to the metre may be as great as 1/200 000th part,

and the actual error of the relation of the pound to the kilogramme as great as i/ioo oooth part.
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Inches.
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Dry Measures.
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3. Metric Measures and Weights.

As explained in section i above, the standards of length and mass in the

metric system are the metre and the kilogramme. Two material representatives

of each of these standards are possessed by the United States' and preserved at

the Office of Standard Weights and Measures at Washington, D, C.

The standards of length are Prototype Metres Nos. 21 and 27. These are

platinum iridium bars of X cross section, and their lengths are defined by lines

ruled on their neutral surfaces. Their lengths at any temperature t Centigrade

are given by the following equations :
—

Prototype No. 21 = 1" + ^.''S + %.v-h(ii, t -\- o.^'oo 100 f;

Prototype No. 27 = i"" — i.''6 -j- 8.''6s7 t -\- o.i'oo 100 i^,

where the symbol /i stands for one micron, or one millionth of a metre. The

probable errors of these Prototypes may be taken as not exceeding ± o.''2,_or

1/5 000 000th of a metre for temperatures between 0° and 30° C.

The standards of mass are Prototype Kilogrammes Nos. 4 and 20. They are

cylindrical masses of platinum iridium. Their masses and volumes are given by

the following equations :
—

Mass. Volume.

Prototype Kilogramme No. 4=1*" — o.'^o7S, 46."'^4i8,

Prototype Kilogramme No. 20 = i*" — o.'"''o39, 46."''402,

where the—
Symbol kg stands for one kilogramme.

Symbol mg stands for one milligramme = o.*"oooooi.

Symbol mi stands for one millilitre = one cubic centimetre.

The definitive probable error assigned to the Prototype Kilogrammes by the

International Bureau is ± o."^oo2, or 1/500 000 oooth of a kilogramme.

The act of Congress approved July 28, 1866, authorizing the use of the metric

system in the United States, provides that the tables in a schedule annexed shall

be recognized " as establishing, in terms of the weights and measures now in use

in the United States, the equivalents of the weights and measures expressed

therein in terms of the metric system ; and said tables may be lawfully used for

computing, determining, and expressing, in customary weights and measures, the

weights and measures of the metric system." The following copy of that sched-

ule gives the denominations of the multiples and sub-multiples of the measures

of length, surface, capacity, and weight in the metric system as well as their

legalized equivalents in British units.
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Schedule annexed to Act of July 28, 1866.

Measures of Length.

Metric Denominations.
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4. The C. G. S, System of Units.

The C. G. S. system of units is a metric system in which the fundamental

units are the centimetre, the gramme, and the mean solar second. It is the sys-

tem now generally used for the expression of physical quantities.

The most important of the derived units in the C. G. S. system, their equiva-

lents in terms of ordinary units, and their dimensions in terms of the fundamen-

tal units of length, mass, and time, are given in the Appendix to this volume.

For an elaborate consideration of the subject of units and their interrelations

the reader may be referred to " Units and Physical Constants," by J. D. Everett,

London, Macmillan & Co., i2mo, 4th ed., 1891.
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I. Form of the Earth. The Earth's Spheroid. The Geoid.

The shape of the earth is defined essentially by the sea surface, which embraces

about three fourths of the entire surface. The sea surface is an equipotential

surface due to the attraction of the earth's mass and to the centrifugal force of its

rotation. We may imagine this surface to extend through the continents, and

thus to be continuous. Its position at any continental point is the height at

which water would stand if a canal connected the point with the ocean.

Geodetic measurements show that this surface is represented very closely by

an oblate spheroid, whose shorter axis coincides with the rotation axis of the

earth. This is called the earth's spheroid. The actual sea surface, on the other

hand, is called the geoid. With respect to the spheroid the geoid is a wavy sur-

face lying partly above and partly below ; but the extent of the divergence of the

two surfaces is probably confined to a few hundred feet.

2. Adopted Dimensions of Earth's Spheroid.

The dimensions of the earth's spheroid here adopted are those of General A.

R. Clarke, published in 1866, to wit :
—

Semi major axis, a= 20 926 062 English feet.

Semi minor axis, i5 = 20 855 121 " "

3. Auxiliary Quantities.

The following quantities are of frequent use in geodetic formulas :
—

e ^U 2— > *^^ eccentricity of generating ellipse,

£1 — ^
/= » the flattening, ellipticity, or compression,

a — 6

a-\-6

I — «
d = a \J 1 —e^= a(i —/) ^ a

i-\- n

= —j—= 2 (« — «^+ «' — «*+•• •)•
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/

4 n

(I + «y
= 4 (« — 2 «° -|- 3 «' — 4 «* -|- .

e^ ^ ^ ^
~?~ T '^ ~^ '^ ~%"^ lb '^ •

I — s/i - ^' _^4.jliSi!_|_7£!i
'*— i_l_y/r^i-?— 4 ^ 8

"1^
64 ^128^—

The numerical values of the most useful of these quantities and their logarithms

are—
log

a = 20 926 062 feet, 7.3206875,

b = 20 855 121 feet, 7.3192127,

e^= 0.00676866, 7.8305030 — 10,

m= 0.00339583, 7-5309454 — 10,

n= 0.00169792, 7.2299162 — lo.

4. Equations to Generating Ellipse of Spheroid.

With the origin at the centre of the ellipse, and with its axes as coordinate

axes, the equation in Cartesian co-ordinates is

^ + ^s- = I, (i)

a and 6 being the major and minor axes respectively, and x and y being parallel

to those axes respectively.

For many purposes it is useful to replace equation (i) by the two following :
—

x = a cos 6,

J/ = ^ sin e, ^^J

which give (i) by the elimination of 6. This angle is called the reduced latitude.

See section 5.

5. Latitudes used in Geodesy.

Three different latitudes are used in geodesy, namely : (i) Astronomical or

geographical latitude
; (2) geocentric latitude

; (3) reduced latitude. The astro-

nomical latitude of a place is the angle between the normal (or plumb line) at that

place and the plane of the earth's equator ; or when the plumb line at the place

coincides with the normal to the generating ellipse, it is the angle between that

normal and the major axis of the ellipse. The geocentric latitude of a place is

the angle between the equator and a line drawn from the place to the earth's cen-

tre
;
or it is the angle between the radius-vector of the place and the equator.

The reduced latitude is defined by equations (2) in section 4 above. The geo-
metrical relations of these different latitudes are shown in Fig. 1 by the notation
given below.
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In order to express the analytical relations between the different latitudes let

n ^ = the astronomical latitude,

i/f= the geocentric latitude,

6 = the reduced latitude.

Then, referring to equations (i) and (2) under
' section 4 above, and to Fig. i, it appears that

dx
dy

'

tan <^

:

a'^'y

'
—+ b'^x

Fig.l.
tan i/r

— y tane = f.ox

Hence
b""

tan i/f = —2" tan <^ = (i — ^ tan <^,

tan e = (i — e^^ tan <^ = (i - ir")-* tan 1^.

^ — i/f = »2 sin 2 (^ — J^
»2'^ sin 4 <^ -j- • • • •

<^ — 6 = « sin 2 ^ — J «^ sin 4 <^ -1- . . .

.

For the adopted spheroid

and
log (i — ^) = 9.9970504,

(ji — iff (in seconds) = 7oo."44 sin 2 </> — i."i9 sin 4 <^,

<ji — 6 (in seconds) = 35o."22 sin 2 <^ — ©."30 sin 4 (j>.

6. Radii of Curvature.

p„= radius of curvature of meridian section of spheroid at any point whose

latitude is ^ = I'D, Fig. i,

p„ = radius of curvature of normal section perpendicular to the meridian at

the same point = FQ, Fig. i.

Pa= radius of curvature of normal section making angle a with the meridian

at same point.

pm= a (i—e^(i- e^ sin'' <^)-i,

p„ = a(i-e^ sin'' <^)-*,

I cos' a , sin' a

P« Pn

^
(i -| 3^ cos' <^ cos' a) (i — e' sin' </>)*.

log (i - ^' sin' <^)-»= + log (i + n)

—
fj,
n cos 2^

-[- J yii «' cos 4<t)

— ^ixfi' COS 6(ji

+ ....

/J.= modulus of common logarithms and n is same as in section 3. For the

adopted spheroid—
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Radius of curvature of meridian section p„ in feet,

log p™= + 7-3199482

— [4.34482] COS 2(j>

-\- [1.274] COS 4^

Radius of curvature of normal section p„ in feet.

log p„ = + 7.3214243
— [3.86770] COS 2<^

+ [0-797] COS 4<^

The numbers in brackets in these formulas are logarithms to be added to the

logarithms of cos 2<j> and cos 4.<j>. The numbers corresponding to the sums of

these logarithms will be in units of the seventh decimal place of the first constant.

Thus, for ^ = o,

log Pn= 7-3214243

- 7373-9

_± 6^

= 7.320687s = log a.

7. Length of Arcs of Meridians and Parallels of Latitude.

a. Arcs of Meridian.

For the computation of short meridional arcs lying between given parallels of

latitude the following simple formulas suffice

:

A^ = <^2 — </>l)

<j,= l(cl>, -\- <{,,), (i)

In these, c^i and ^2 are the latitudes of the ends of the arc, AJ/ is the required

length, and p„ is the meridian radius of curvature for the latitude <^ of the middle

point of the arc. The formula for AM implies that A<^ is expressed in parts of

the radius. If A<^ is expressed in seconds, minutes, or degrees of arc, the for-

mula becomes —
Meridional distance i^M in feet.

A ,^— Pm A<)!) (in seconds)

206264.8 '

Pm A<^ (in minutes)~
3437-747

p„ A<^ (in degrees)
.~

57.29578
'

(2)

log (1/206264.8) = 4.6855749 - 10,

log (1/3437-747) = 6.4637261 — lO,

log (1/57-29578) = 8.2418774 - 10.

^11 #2 = end latitudes of arc, A^ = 0, — 0^,

p„ = meridian radius of curvature for = ^(^j + 0,) ; for log p„ see Table 10.
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The relations (2) will answer most practical purposes when A(^ does not exceed

5". A comparison with the precise formula (3) below shows in fact that the error

of (2) is very nearly

J «= A<^'' cos 2<t> . t^M,

which vanishes for <^ = 45°, and which for A<^ := 5° is at most TT^'sntr ^^t or

about II feet.

Numerical example. Suppose—

^= 37° 29' 48."i7.

«^i = 35° 48' 29-"89.

Then

<^= K<^.+ '^i) = 36°39' °9."o3,

A(^= <^2 - <^i = 1° 41' i8."28,

= 6o78."28.

From the first of (2)

cons't. log 4.6855749 — 10

Table 10, log p„ 7.3193112

log A<;f» 3.7837807

t^M=. 614705 feet, log AJ/ 5.7886668

The values of ^Mior intervals of 10", 20" . . . 60", and for 10', 20' . . . 60' are

given in Table 17 for each degree of latitude from 0° to 90°.

For precise computation of long meridional arcs the following formula is ade-

quate :
—

AJ/'= Ao A</> — Ai cos 2<l> sin A<^

+ A2 cos 4^ sin 2A<^

— As cos 61^ sin 3A<^ (3)

+ At cos 81^ sin 4A^

In this, AJ^ <!>, and A(^ have the same meanings as above, and Ao, Ai, . . . are

functions of a and * or of a and n.

Thus, in terms of a and n,

Ao= a(i-{- n)-' (i + J „=+ ^ «* + ... ),

^1 = 3^^ (i + «)~^ (« - i «'-• ).

^3= |f «(i+«)-i(«»-...),

Introducing the adopted values of a and «, these constants become—
log.

.^0 = 20 890 606 feet, 7.3199510,

Ai^ 106 411 feet, 5.0269880,

A2= 113 feet, 2.0528,

A3 = 0.15 feet, 9.174 — 10.
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It appears, therefore, that the first three terms of (3) will give AJ/ with an

accuracy considerably surpassing that of the constant An- In the use of (3) it will

generally be most convenient to express A^ in degrees, and in this case Aq must

be divided by the number of degrees in the radius, viz. : 57.2957795 [i.7581226].

Applying this value and writing the logarithms of Ao, Ai, etc., in rectangular

brackets in place of A^, Ai, etc., (3) becomes

Meridional distance Ail/ in feet.

AM^ [5.5618284] A<^ (in degrees)

— [5.0269880] cos 2t^ sin A^
-|- [2.0528] cos 4(f> sin 2A<^

(4)

20 = 02 + 01. A^ = 0, — < 01, <ji, = end latitudes of arc.

Formula (4) will suffice for the calculation of any portion or the whole of a

quadrant. The length of a quadrant is the value of the first term of (4) when

<j> = 45° and A<^ = 90°, since all of the remaining terras vanish.

Numerical examples.— 1°. Suppose

1^1= 0° and ^2= 45°'

Then 2^ = 45°.

A-^= 4S°-

cons't

45

log.

5.5618284

1.6532125

ist term + 16 407 443 feet ist term 7.2150409

cos 2<^ 9.8494850 — 10

sin A<^ 9.8494850 — 10

cons't 5.0269880

2d term — 53 205.7 ^^^^ ^'^ term 4.7259580

The third terra of the series vanishes by reason of the factor cos 4 ^ = cos 90°

::= o. The sum of the first two terms, or length of a meridional arc from the

equator to the parallel of 45°, is 16354237 feet.

2°. Suppose

Then

<^i = 45° and <^2 = 90°.

2-^= 135".

A<^= 4s».

The numerical values of the terms will be the same as in the previous example,
but the sign of the second term will he. plus. Hence the length of the meridional
arc between the parallel of 45° and the adjacent pole is 16460649 feet. The
sum of these two computed distances, or the length of a quadrant, is 32 814886
feet.
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This agrees as it should with the length given by (4) when 2<j> = 90° and A^
= 90°.*

b. Arcs of parallel.

The radius of any parallel of latitude is equal to the product of the radius of

curvature of the normal section for the same latitude by the cosine of that lati-

tude. That is, see Fig. i, r being the radius of the parallel—
r= p„ cos

<t>,

and the entire length of the parallel is—
2 TT r= 3 TT p„ cos

<f).

Designate the portion of a parallel lying between meridians whose longitudes

are Xj and X^ by ^-P} and call the difference of longitude X^ — Xi, AX.

Then—
Arc of parallel AP in feet.

2 B- p„ cos cf)A/'= 2 i!^ (in seconds),
1296000 ^ "

2 77 p„ cos <i . . ,. . s , ^= 21600 ^^ ('" minutes), (i)

2 TT p„ cos
<l> ., .. , ,= '^ AX (in degrees).

log (2 77/1296000) = 4.6855749 — io>

log (2 77/21600) = 6.4637261 — 10,

log (2 77/360) = 8.2418774 — 10.

Aj, \, = end longitudes of arc, A\ = A^— \,
Pn= radius of curvature of normal section for latitude of parallel ; for log pn see Table 1 1.

Numerical Example.— Suppose <^ = 35°, and AX = 72°. Then from the third

of (9)
log.

cons't 8.2418774 — 10

Table 11, p„ 7.3211716

cos<^ 9-9133645 — 10

^^ 1-8573325

A^= 21 564 827 feet, A^ 7-333746o

* The best formula for computing the entire length of a meridian curve is this

:

TT (a + *) (I + i «2 + A «< + . . .),

in which a, b, and n are the same as defined in section z. For the values here adopted

—

log.

(i + i «' + • - •( 0.0000003

(a + b) 7.6209807

ir 0.4971499

length 8.1181309

The length of the perimeter of the generating ellipse, or the meridian circumference of the

131 259 550 feet = 24 859.76 miles.
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The values of APfor intervals of lo", 20" . . . 60", and for 10', 20' . . .
60'

are given in Table 18 for each degree of latitude from 0° to 90°.

8. Radius-Vector of Earth's Spheroid.

p = radius-vector

= a (i - 2«» sin" 4> + ^ sin» c^)* (i - «' sin" ^)-».

log p= log
^_|: ,^^;^ + /i (w - «) cos 24>

— \ f>.{m^ — n^ cos 4^

+ J A* (»«• — «') cos 6</>

For the adopted spheroid

log (p in feet) ::= 7.3199520 -f- [3-86769] cos 2<^

— [1.2737] cos 4<^,

the logarithms for the terms in <^ corresponding to units of the seventh decimal

place. Thus, for ^ = o,

log P= 7-3199520

+ 7373-8
— 18.8

= 7.3206875 = log a.

9. Areas of Zones and Quadrilaterals of the Earth's

Surface.

An expression for the area of a zone of the earth's surface or of a quadrilateral

bounded by meridians and parallels may be found in the following manner :
—

The area of an elementary zone dZ, whose middle latitude is ^ and whose

width is p„ (/0, is (see Fig. i),

dZ =2 IT r p^ dcj>

= 2 IT p^ p„ cos <j> d<f>.

By means of the relations in section 6 this becomes

j^r 2 / 2N
cos <^ d<f>dZ= 2 IT d' (i —e^ 7 o , ,,.

2 I — g" d je sin <^)

(0

The integral of this between limits corresponding to <^i and ^2, or the area of a

zone bounded by parallels whose latitudes are 1^1 and ^2 respectively, is

Z-=ir d'
X — €'

e sin <^2 e sin <^j

I — «" sm' <^2 I — «" sin= <^i

+ i Nap. log
('+^siny (i - . sin «^,)IS ^ s (i — g sm ^2) (i 4- ^ sin <^i)

(2)
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To get the area of the entire surface of the spheroid, make <^i= — ^ tt and <^j

= -}- i T in (2). The result is

Surface of spheroid = 2 tt »= i -|- Nap. log L _g ) • (s)

For numerical applications it is most advantageous to express (3) in a series of

powers of e. Thus, by Maclaurin's theorem,

I — —
c"
"•') (^)

For the calculation of areas of zones and quadrilaterals it is also most advan-

tageous to expand (2) in a series of powers of e sin <j>\ si^d e sin <^2 ^nd express

the result in terms of multiples of the half sum and half difEerence of <^i and <^2.

Thus, (2) readily assumes the form

Z =z 2 IT a^ {1 — e^\ (sin </>2 — sin ^i) + - «" (sin° <^2 — sin' <^i) -f- • • • I-

From this, by substitution and reduction, there results

wherein

„ 1 Ci cos ^ sin J A<^ — C2 cos 3(^ sin | A<^ )

^ — 2 'r
j _|_ Q cos s^ sin f A^ - . j

<-S;

4> = i(</.2 + <^0,

A^ = <^2 — <^l ,

C2=2«»(^+|- + 0+...), (6)

If Q be the area of a quadrilateral bounded by the parallels whose latitudes are

<^i and <^2 and by meridians whose difference of longitude is AX,

Q= ^Z.^ 23r

Hence, using the English mile as unit of length, (5) and (6) give for the

adopted spheroid—
Area of quadrilateral in square miles.

( <ri COS ^ sin ^ A<^ — c^ cos 3^ sin | A(^
)G= AX (m degrees) j^^^^^^^^3j^^^^___ j,

log ^1* = 5-7375398, (7)

log ^2= 2.79173,

log "^3= 9-976 — ro.

'P = i(l>2 + "Pi ). ^<l> = 't>2
— "^i.

^,, (p2 = latitudes of bounding parallels,

AA. = difference of longitude of bounding meridians.

*
'^1, '2. "^s

^^^ obtained from C,, Cj, Cj respectively by dividing the latter by the number of

degrees in the radius, viz : 57.29578.
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Numerical examples.— i°. Suppose <;fii = o, <^2^ 9°° and AX =: 360°. Then

(7) should give the area of a hemispheroid. The calculation runs thus :

log. log. log.

c\ 5-7375398 C2 2.79173 Ci 9.976 - 10

cos <^ 9.8494850 — 10 cos 3 9!) 9.84948„ — 10 cos 5 <^ 9.849^ — 10

sin \ A<^ 9.8494850 — 10 sin | A(^ 9.84949 — 10 sin f A^ 9-848„ — 10

360 2.5563025 360 2.55630 360 2.556

Sum 7.9928123 5.o47oo„ 2.229

Hence —
ist term =i -\- 98358591
2dterm = -- 111429
3d term = -|- 169

Q= sum = 98470189 •

Twice this is the area of the spheroidal surface of the earth ; i. e., 196 940 378

square miles.

2°. The last result may be checked by (4). Thus,

(y- + ^ + • . j
= 0.00225928

log (i — Y - • •
• ) = 9-9990177

log a^ = 7.1961072
log 4 IT = 1.0992099

log (196940407) = 8.2943348

This number agrees with the number derived above as closely as 7-place

logarithms will permit, the discrepancy between the two values being about

^TyTyiirTrTr P^^rt of the area. Hence, with a precision somewhat greater than the

precision of the elements of the adopted spheroid warrants.

Area earth's surface= 196 940 400 square miles.

The areas of quadrilaterals of the earth's surface bounded by meridians and

parallels of 1°, 30', 15', and 10' extent respectively, in latitude and longitude, are

given in Tables 25 to 29.

10. Spheres of Equal Volume and Equal Surface with

Earth's Spheroid.

r-i = radius of sphere having same volume as the earth's spheroid,

^2 = radius of sphere having same surface as that spheroid.
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»2= a{r-
3 IS

~
is

,..)-

a — ri = ^ae^(i-\-^e^-\-...)^ 0.00113 a, about.

^2 — ri = 5I5 ae* -[-... = 0.00000 1 a, about.

II. Coordinates for the Polyconic Projection of Maps.

In the polyconic system of map projection every parallel of latitude appears on

the map as the developed circumference of the

base of a right cone tangent to the spheroid along

that parallel. Thus the parallel EJ^ (Fig. 2)

will appear in projection as the arc of a circle

£0E (Fig. 3) whose radius OG^l is equal

to the slant height of the tangent cone EFG
(Fig. 2). Evidently one meridian and only one

will appear as a straight line. This meridian is

generally made the central meridian of the area

to be projected. The distances along this cen-

tral meridian between consecutive parallels are

made equal (on the scale of the map) to the real A^

distances along the surface of the spheroid. The
circles in which the parallels are developed are

not concentric, but their centres all lie on the

central meridian. The meridians are concave

toward the central meridian, and, except near the corners of maps showing large

areas, they cross the paral-

lels at angles differing little

from right angles.

In the practical work of

map making, the meridians

and parallels are most ad-

vantageously defined by the

co-ordinates of their points

of intersection. These co-

ordinates may be expressed

in the following manner

:

For any parallel, as EOF
(Fig. 3), take the origin O
at the intersection with the

central meridian, and let the rectangular axes of Y {OG) and X {OQ) be re-

spectively coincident with and perpendicular to this meridian. Call the interval

in longitude between the central meridian and the next adjacent one AA, and

denote the angle at the centre G subtended by the developed arc OP by a.
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Then from Fig. 3 it appears that

X= I sin a,

y=. 2 I sin° ^a.

But from Figs. 2 and 3,

'^=PnCOt<^,

la= r A\= p„ AA. COS <(>,

whence
a= AA. sin <p.

Hence, in terms of known quantities there result

x= p„ cot
<l>

sin (AX sin </>), , »

y^2p„cot<l> sin'' J (A\ sin ^).

Numerical example.— Suppose <^ =
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Values of J(AX sin <^)*.

Iv
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The azimuths a^.-, and oj.i, it will be observed, are the astronomical azimuths,

or the azimuths which would be determined astronomically by means of an alti-

tude and azimuth instrument.

b. Characteristic property of geodesic line.

Let a'i.3= azimuth of geodesic line at /j,

a'2.1= azimuth of geodesic line at /ji

Oi] 62 = reduced latitudes of -fi and P^ respectively.

Then the characteristic property of the geodesic line is

sin ai.2 cos 61= sin (i8o°— ogj) cos 0^ = cos 60,

where 60 is the reduced latitude of the point where the geodesic through /j and

/j is at right angles to a meridian plane.

The difference between the astronomical azimuth ai.2 and the geodesic azimuth

a'i.2 is expressed by the following formula

:

"1.2 — "'1^ (in seconds) = y^ p" ^' {-) cos^ <^ sin 2ai.2>

where s= length of geodesic line I'l F^,

a= major semi-axis of spheroid,

e^ eccentricity of spheroid,

p" = 2o6264."8,

4> = astronomical latitude of Fi,

ai.2= azimuth (astronomical or geodesic) of F^ F^,

log tV p"( -) '= 7-4244 — 20, for a in feet.

Thus, for <^ = o and ai.2 = 45°, for which cos'' (j) sin 201.2= i, the above for-

mula gives

"1.2 — «'i.2= o-"o74, for J = 100 miles,

= 0.296, for s = 200 miles.

so that for most geodetic work this difference is of little if any importance.

13. Solution of Spheroidal Triangles.

The data for solution of a spheroidal triangle ordinarily presented are the

measured angles and the length of one side. This latter may be either a geodesic

line or a vertical section curve, since their lengths are in general sensibly equal.

Such triangles are most conveniently solved in accordance with the rule afforded

by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of

any measurable size on the earth) are sensibly equal to the sides of a plane

triangle having a base of the same length and angles equal respectively to the

spheroidal angles diminished each by one third of the excess of the spheroidal

triangle. In other words, the computation of spheroidal triangles is thus made to

depend on the computation of plane triangles.
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a. Spherical or spheroidal excess.

The excess of a spheroidal triangle of ordinary extent on the earth is given by

E (in seconds) = p" ,

Pm Pn

where S is the area of the spheroidal or corresponding plane triangle
; p„, p„ are

the principal radii of curvature for the mean latitude of the vertices of the tri-

angle ', and p" = 206 264."8. For a sphere, p^= p„ = radius of the sphere.

Denote the angles of the spheroidal triangle by A, £, C, respectively ; the cor-

responding angles of the plane triangle by a, j3, y (as on p. xviii) ; and the sides

common to the two triangles by a, b, c. Then

S= \ ab ^va. y =. \ be ^ivi a= \ ca sin /3.

a= A— \^, ^— B— \^, y=C— 1£.

Tables 13 and 14 give the values of log {jl'lzp^^ for intervals of 1° of astro-

nomical or geographical latitude.*

14. Geodetic Differences of Latitude, Longitude, and

Azimuth.

a. Primary triangulation.

Denote two points on the surface of the earth's spheroid by P^ and P^ respec-

tively. Let

J= length of geodesic line joining P^ and P^,

<^i, (^2 = astronomical latitudes of P^ and P^,

Aj, X2 = longitudes of Pi and P^
AA, = X2— Ai,

ai.2= azimuth of P^ P^ {s) at P^,

02.1 = azimuth of P^ Pi (s) at P^,

e = eccentricity of spheroid,

Pm. Pn = principal (meridian and normal) radii of curvature at the point Pi.

Then for the longest sides of measurable triangles on the earth the following

formulas will give <^2, ^2> and 0^,1 in terms of <^i, Aj, ai.2, and s. The azimuths are

astronomical, and are reckoned from the south by way of the west through 360°.

180°— ai.2, and 02.1= 180° -\- a", for ai.2 <i8o'

«i.2— 180°, and 02,1 = 180°— a", for ai.2 > 180'

^^i{-+lT^^ (^J'cos» <i>i COS= a'} (2)

^= k TZrp cos^ ^1 sin 2 a'
(3)

* For the solution of very large triangles and for a full treatment of the theory thereof, consult
Die Mathematiscken und Physikalischen Theoriem der H'oheren Geodasie, von Dr. F. R. Helmert.
Leipzig, 1880, 1884.
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tan K-" + AX + = g|-!^^°I " 1^ T i cot ^ a'
cos i(9o — ^1+ 1?) ^

(4)

tan Ka" - AX+ = ;;" ffi°: -tli cot ^ a'
sin ^(90 —

<t>i+ 7i)
"

'l^-'^^=i £|^^^4^)0 + TV.^COS^Ka"-a')}. (s)

To express 97, ^, and
<f>2
— (^1 in seconds of arc we must multiply the right hand

sides of (2), (3), and (5) by p" = 206 264."8. For logarithmic compution of rj"

and 4"> or 1; and ^ in seconds, we may write with an accuracy generally sufficient

log r," = log (p"s/p:) + I J^ (^J' cos'' <!>, COS» a', (6)

log r = log I (TiT^, + log {(v'r COS» <^i sin 2 a7, (7)

where /j. in (6) is the modulus of common logarithms. For units of the 7th deci-

mal place of log ij" we have for the adopted spheroid

. 1 /*<?"

Also

Similarly, for the computation of the logarithm of the last factor in (5) we have

log {i + tV v'

Putting for brevity

log {l + tV v' C0S» i(a" - a')} = log {I + -±^^ {yf'f COS^ ^{0!' - a')}.

the logarithm of the desired logarithm is given to terms of the second order

inclusive in q by
log log (l + ?) = log /x jT - I

/^ ^.

For the adopted spheroid

for units of the seventh decimal place.

For a line 200 miles (about 320 kilometres) long, the maximum value of the

second term in (6) is but 12.6 units in the 7th place of log ly". For the same

length of line, the maximum value of IH' is o."895, and the maximum value of the

logarithm of the last factor in (5), or log (i -|- q), is less than 922 units in the

seventh place of decimals.

For computing differences of latitude, longitude, and azimuth in primary

triangulation whose sides are 1° (about 70 miles, or 100 kilometres) or less

in length, the most convenient means are formulas giving <^2 — "^i> ^ — ^i) ^"d
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ojj — (i8o° — ai.2), in series proceeding according to powers of the distance s.

Formulas of this kind with convenient tables for facilitating the computations

are given in the Reports of the U. S. Coast and Geodetic Survey.*

b. Secondary triangulation.

For secondary triangulation, wherein the sides are 12 miles (20 kilometres) or

less in length, and wherein differences of latitude and longitude are needed to the

nearest hundredth of a second only, the following formulas may suffice. Using

the same notation as in the preceding section, the formulas are :
—

^2 ^ ^1 + ^<A.

A, = Aj + AA, (i)

02.1= 180° -|- ":.2 + Aa,

Ai^^ — ttiS cos ai.2 — «2 ^^ sin^ ai.2,

AA = -\- bi sec ^1 s sin ai.2 — b^ s^ sin 012 cos ajj, (2)

Aa = — Ci tan ^1 s sin ajj -\- c^ J^ sin aj.2 cos a.^3,.

The constants entering the latter equations are defined by the following

expressions, wherein p„ and p„ are the principal radii of curvature of the spheroid

at the point whose latitude is <^i and p" = 206 264."8 :

d" o"

Pm Pfi

p" tan 1^1 , p" sec <^i tan <^i p" (i -{- 2 tan* <^i)
«2 1 ''2 2 ' '^ ;—2

•

2 Pm P» Pn 2 p„

The logarithms of the factors «i, h-^, c^, a^, b^, c^, are given in Table 15 for the

English foot as unit, and in Table 16 for the metre as unit, the argument being

the initial latitude t^j for all of them.

When all of the differences given by (2) are computed, they may be checked

by the formula

sin K-^2+ ^1) = ^- (3)

For convenience of reference in numerical applications of the above formulas,

(2) may be written thus :

A<^ = ^1 + ^2,

AA = A + B„
Aa = Ci + C2,

in which, for example, Ai and A^ are the first and second terms respectively of

A<^, due regard being paid to the signs of the functions of ai.2.

Numerical example. The following example will serve to illustrate the use of

formulas (i) to (3). The value of log j is for s in English feet, j being in this

case about 12.3 miles.

.^1 38°54'o8."38 A^ 88° 03' 24."is a,.^ 43° 01' 46."29
A<^ — 07' so."2i AA +o9'2o."22 Aa — 05' 5i."32

^2 38° 46' i8."i7 A2 88° 12' 44."37 o.^^ 222° 55' S4."q7
i(02+<^i) 38°So'i3."27

* See Appendix 7, Report of 1884, for latest edition of these tables.
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log log log log

J 4.81308 s 4.81308 s sin ai.2 4.647 s sin ai.j 4.647

00s oi.a 9.86392 sin ai.2 9.83402 s sin 01.2 4.647 s cos 01.2 4.677

«i 7.99495 sec ^1 0.10890 «2 0.279 ^2 0.688

^1 7-99316 C2 0-733

Ai 2.67195 Bi 2.74916 .<42 9.573 B2 0.012

sin ^1 9.7979s Ci 0.057

Ci 2.54711
\og

Ai - 469."84 ^1 +56i."25 C^ - 352."46 Aa 2.54570

^2 - o."37 -52 - i."o3 C2 + i."i4 A^ 2.74836

A<]!. — 47o."2i A\ + 560."22 Aa — 35i."32 sin ^(.^2 + (^1) 9.79734

15. Trigonometric Leveling.

a. Computation of heights from observed zenith distances.

Let .! = sea level distance between two points Pi and Pi,

Hi, Hi = heights above sea level of P-^ and Pi,

Zi = observed zenith distance of P^ from Pi,

Zi= observed zenith distance of Pi from Pi,

p = radius of curvature of vertical section at Pi through P^, or at P2

through Pi, the curvature being sensibly the same for both for this

purpose,

C^ angle at centre of curvature subtended by s,

Ml, rrii = coefficients of refraction at Pi and P^,

^Zi, A22 = angles of refraction at Pi and Pi.

Then, the fundamental relations are

C= - , A^i = MiC, Azj = niiC,
P (0

i!i-\-Zi-\- Azi 4- ^Zi = 180° + c,

Hi-Hi= s tan 1(^2 + A^2 - % - A^O (i + ^^^j^ + 7^+ • • •)• (2)

When the zenith distances zi and Zi are simultaneous, or when Azi and A22 are

assumed to be equal, (2) becomes

^2-^z= ^tan K^2 - ^0 (i +^^^7^' + 7^+ - • )• (3)

For the case Of a single observed zenith distance Zi, say, and a known or

assumed value oi m = mi = nii, the following formula may be applied :

Hi- Hi = scoiZi-{-^^ •^+~^— J'cot^^i. (4)

The coefficient of refraction m varies very greatly under different atmospheric

conditions. Its average value for land lines is about 0.07. The following table

gives the values of log ^(i —2 m) and log (i — m) for values of m ranging from

0.05 to o.io. It is taken from Appendix 18, Report of U. S. Coast and Geodetic
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Survey for 1876. Table 12 taken from the same source gives values of log f

needed for use in (3) and (4).

Table of values of log \{i — 2 m) and log (i — »?).

m



GKODESY. Ixiii

where the upper sign is used when a^ is an angle of elevation and the lower sign

when oj is an angle of depression.

b. Coefficients of refraction.

When Zi and z^ are both observed for a given line, a coefficient of refraction may

be computed from the assumption of equality of coefficients at the two ends of

the line. Thus, equations (i) give

or

whence

A^i -\- A02 = 180° + C — (21 + Z2),

(wi+ »22) ^
= 180° + ^

- (% +

»«i+ »«a= I — - (^1 + 2'2 — r8o°).

Assuming mi= m2 = m, and supposing zi-\- z^ — 180° expressed in seconds

of arc,

m = \\i - -^ (zj + 22 - 180°)
I

.

p"=2o6264."8, log p"= 5.3144251.

c. Dip and distance of sea horizon.
Let

Then

h = height of eye above sea level,

S = dip or angle of depression of horizon,

s = distance of horizon from observer.

8 (in seconds) = 58.82 sjh in feet,

= 106.54 'ijh in metres.

s (in miles) = r-3i7 V^^ in feet,

s (in kilometres) = 3-839 ^h in metres.

The above formulas take account of curvature and refraction. They depend

on the value 0.0784 for the coefficient of refraction, and are quite as accurate as

the uncertainties in such data justify. For convenience of memory, and for an

accuracy amply sufficient in most cases, the coefficients of the radicals in the last

two formulas may be written f and V respectively.

16. Miscellaneous Formulas.

a. Correction to observed angle for eccentric position of instrument

Let C" be the eccentric position of the instrument, and Co the observed value of

the angle at that point between two other points A and £. Let C denote the

central point as well as the angle AC£ desired. Call the distance CC r and

denote the angle ACC by Q. Denote the lines BC and AC, which are as-

sumed to be sensibly the same as BC and AC, by a and b respectively. Then
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„ ^ ,. , . p'V sin {6 — C„) p'V sin &
C— Q (in seconds) = ^ — '^—^ 1

p" = 206 264."8, log p" = 5.3144251.

Attention must be paid to the signs of sin (6 — Co) and sin 6, and to the fact

that angles are counted from A towards B through 360°. A diagram drawn in

accordance with the above specifications will elucidate any special case.

b. Reduction of measured base to sea level.

Let / be the length of the bar, tape or other unit used in measuring the base.

Let 4 be the corresponding length reduced to sea level for a height h, this latter

being the observed height of /. Then if p denote the radius of curvature of the

earth's surface in the direction of the base,

,^^,={.-l+...y
with sufficient accuracy. Hence, for the whole length of thje base,

If Z denote the total measured length, Zo the corresponding total sea level

length, and ZTthe mean value of the heights h, the above equation gives

La= L - L -.
P

c. The three-point problem.

In this problem the positions of three points A, B, C, and hence the elements

of the triangle they form, are given together with the two angles AFC and BFC
at a point P whose position is required. Denote the angles and the sides of the

known triangle by A, B, C, and a, b, c, respectively. Also put

APC=P, BPC—a,
PAC= x, FBC=zy.

Then the sum of the angles in the quadrilateral FACB is

a + j8+ ^+jF+C=36o°,
whence

K^ +y) = 180° - Ka+ ^+ c). (i)

Compute an auxiliary angle z from the equation

« sin 18 / s

tan z = -J—.
—-

; (2)
^ sin a ^ '

Then
tan i(x -y) = tan (z - 45°) tan i(x+ y). (3)

These three equations give all the data essential to a complete determination
of the position of F. Any special case should be elucidated by a diagram drawn
in accordance with the specifications given above.
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When the positions of the points A, B, C are given on a map, the position of

F on the same map may be found graphically by drawing lines making angles

with each other equal to the given angles u, and ^ from a point on a piece of

tracing paper, and then placing this tracing on the map so as to meet the required

conditions. This ready method of solving the problem is often sufficient.

17. Salient Facts of Physical Geodesy.

a. Area of earth's surface, areas of continents, area of oceans.*

Total area of earth's surface

Area continent of Europe .

Asia. .

Africa .

" Australia
" " America

Total area of continents .

Total area of oceans . .

Square miles.

196940000

3 820000

17 230000
1 1 480 000

3 406 000

15950000
51886000

145054000

b. Average heights of continents and depths of oceans-t

Feet. Metres.

Average height of continent of Europe .

Asia . .

Africa ,

Australia
" " America .

Average height of all

980



Ixvi GEODESY.

Assuming the mass of a cubic foot of water to be 62.28 pounds (at 62° F.),

Mass of earth* = 13 284 X 10^^ pounds.

= 6 642 X 10^' tons (o£ 2000 lbs.).

=^ 60 258 X 10"° kilogrammes.

d. Principal moments of inertia and energy of rotation of earth.

M= mass of earth,

A = moment of inertia of earth about an axis in its equator,

C = moment of inertia about axis of rotation,

a = equatorial axis of earth,

0) = angular velocity of earth,

= (2 7r/86i64) for mean solar second as unit of time.

Thent
A = 0.325 Ma'',

C =^ 0.2,26 Ma\

Energy of rotation of earth =: J w^C.

= 0.163 <^^J^a\

= 504 X 10^' foot-poundals.

:^2i7 X io^° kilogramme-metres.

= 212 X 10°^ ergs.

References.

The most exhaustive treatise on the theory of geodesy is found in " Die Mathe-

matischen und Physikalischen Theorieen der Hoheren Geodasie," von Dr. F. R,

Helmert. Leipzig : B. G. Teubner ; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excel-

lent work on the practical as well as theoretical features of the subject is " Die

geodatischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae ; autorisirte

deutsche Ausgabe, von E. Lamp. Berlin : Robert Oppenheim, 8vo, 1878. Of

works in English the most comprehensive is " Geodesy," by A. R. Clarke. Ox-

ford : The Clarendon Press, 8vo, 1880.

* The mass of the earth's atmosphere is about one-millionth part of the entire mass, or about

66 X lo" tons.

t The values of A and C are those given by Harkness, loc. cit., but they are here abridged to

three places of decimals.
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I. The Celestial Sphere. Planes and Circles of Reference.

The celestial sphere is a sphere to which it is convenient to refer stars and

other celestial objects. Its centre is assumed to be coincident with the eye of

the observer, and the objects referred to it are supposed to lie in its surface.

The orientation of this sphere is defined by its equator, which is assumed to be

parallel to the earth's equator. The equator is thus the principal plane of refer-

ence. Other planes of reference are the plane of the horizon, which is perpen-

dicular to the pLumb line at the place ; the meridian, which is a plane through

the place and the earth's axis of rotation ; the prime-vertical, which is a vertical

plane at the place at right angles to the meridian ; and the ecliptic, which is a

plane parallel to the plane of the earth's orbit. These planes cut the surface of

the sphere in great circles called the equator, the horizon, the meridian, etc. The

points on the sphere defined by the intersection of the meridians, or the points

where the axis of the equator pierces the sphere, are called the poles. Similarly,

the prolongation of the plumb line upwards pierces the sphere in the zenith, and

its prolongation downwards pierces the sphere in the nadir. Great circles pass-

ing through the zenith are called vertical circles.

2. Spherical Co-ordinates.

a. Notation.

The position of a celestial body may be defined by several systems of co-ordi-

nates. The most important of these in practical astronomy are the azimuth

and altitude system and the hour angle and declination system. In the first of

these the azimuth of a star or other body is the angle between the meridian

plane of the place and a vertical plane through the star. It is measured, in gen-

eral, from the south around by the west through 360°. The altitude of a star is

its angular distance above the horizon, and its zenith distance is the complement

of the altitude. In the second system the hour angle of a star is the angle

between the meridian plane of the place and a meridian plane through the star.

It is measured towards the west through 360°. The declination of a star is its

angular distance above or below the equator ; the complement of the declination

is called the polar distance.

The angular distance of the pole above the horizon is equal to the zenith dis-

tance of the equator, or to the latitude of the place. Likewise, the altitude of

the equator and the zenith distance of the pole are each equal to the comple-

ment of the latitude at any place.
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These quantities are usually designated by the following notation :
—

A = the azimuth of a star or object,

h = its altitude,

z = its zenith distance = 90° — h,

t =: its hour angle,

8 = its declination,

/ = its polar distance = 90° — 8,

q= the parallactic angle, or angle at the star between the pole and the

zenith,

</> ^ the latitude of the place of observation.

b. Altitude and azimuth in terms of declination and hour angle.

The fundamental relations for this problem are—
sin k = sin <^ sin 8 -\- cos <^ cos 8 cos t,

cos A cos A ^ — cos ^ sin 8 -|- sin </> cos 8 cos f, (i)

cos A sm A = cos 8 sin /.

When it is desired to compute both A and A by means of logarithms, the most

convenient formulas are,

m sin M :=^ sin 8, ,, tan 8

m cos J/= cos 8 cos t, cos r

,_ , tan fcosM , ^smA = m cos (<^ - M), tan A =
gin (^ -M)' ^^^

cos /i COS A =m sin (<^ — JIf),
^^^^ ^ __ ^o^ -^

_

cos A sin A = cos 8 sin f,
tan ((^ — M)'

A > 180° when ( > 180° and A < 180° when f < 180°.

For the computation of A and z separately, the following formulas are useful

:

sin /
tan A =

cos
<t>
tan 8(1 — tan ^ cot 8 cos i)

(3)

a sin f

I — l> cos /'

where
a = sec <^ cot 8, 6 = tan <{> cot 8.

Formulas (3) are especially appropriate for the computation of a series of

azimuths of close circumpolar stars, since a and & will be constant for a given

place and date.

cos z= cos (^ ~ 8) — 2 cos (j) cos 8 sin' ^ t,

sin' i z = sin' i (sfc ~ 8) -f cos
<t>

cos 8 sin' ^ t, , \

(<^~ 8) = (^-S, for<^ >S ^^-^

= 8 — <^, for .^< 8.
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For logarithmic application of (4) we may write

m^= cos <^ cos 8, «'= sin° \{<^ ~ S),

tan J^= ^ sin 1 1, (s)n
." , n m .

c. Declination and hour angle in terms of altitude and azimuth.

The fundamental relations for this case are

sin 8^ sin <^ sin h — cos <^ cos h cos A,

cos 8 cos /= cos ^ sin ^ -|- sin <^ cos h cos A, (i)

cos 8 sin ^= cos h sin A.

For logarithmic computation by means of an auxiliary angle Mone may write

»2 sin M= cos A cos A, taniJ/:= cot A cos A,

m cos J/'= sin h,

• ff • /J Ttr\ J. J tan ^ sin Jlf , vsm 8 = »? sm (d> — J/), tan t =. -. j^—

,

(2)^ '
cos (<^ — My

cos 8 cos t-= m cos (<^ — M),

cos 8 sin ^^ cos ^ sin A, tan 8= tan (<^ — M'\ cos /.

d. Hour angle and azimuth in terms of zenith distance.

, cos z — sin A sin 8
cos t= —^cos

<l>
cos

^^^,
sin_(a^^^)_cos_(o^) ^^i(^_^8 + ^).

cos er cos (a- — z)

. sin <i cos — sin 8
cos A = ; -. .

cos ql sm z

tan=M=^^2>Zl^_^L(2L=:^, ^= n<^+ 8+ ^)-
cos o- sm (<r — 8)

e. Formulas for parallactic angle.

cos «= sin 8 sin <^ -)- cos 8 cos ^ cos /,

sin z cos q^ cos 8 sin ^ — sin 8 cos <^ cos t,

sin « sin ^^ cos ^ sin ^, is

sin 8^ cos a sin </) -|- sin cos <^ cos t,

cos 8 cos ^= sin 2 sin <^ -f- cos z cos <^ cos ^,

cos 6 sin f = cos ^ sin A.
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The first three of these are adapted to logarithmic computation as follows :
—

n sin iV= cos <^ cos t,

n cos N=- sin <^,

cos z-=n sin (8 -f- J^,

sin z cos q^n cos (8 -f- -^>
sin z sin ^= cos <^ sin t ;

whence
tan iV:= cot

<i>
cos t,

. tan / sin iV , ,

tan sm «r= -:

—

j^^.——r, (2)
* sm (8 + N) ^ '

tan z cos f= cot (8 + -i^)-

A similar adaptation results for the last three of equations ,(i) by interchanging

8 and z. The equations (2) give both z and q in terms of <^, 8, and t, without

ambiguity, since tan z is positive for stars above the horizon.

If A, z, and q are all required from <^, 8, and t, they are best given by the

Gaussian relations

sin \ z sin ^{A + ^) = sin ^ ^ cos i(<^+ 8),

sin \ z cos \(A -\- q)^cos\t sin J(^ — 8), , .

cos I z sin J(^ — ^) ^ sin ^t sin ^(^ + 8),

cos ^ 2 cos J(^ — ^) ^ cos J ^ cos J(^ — 8).

f. Hour angle, azimuth, and zenith distance of a star at elongation.

In this case the parallactic angle is 90° and the required quantities are given by

the formulas
tan <^

^°' ' = tiJT'

cos 8 . .

sm A= T> (i)
cos <^ '• '

sin rf)

cos z = -7—
"s"sin o

When all of the quantities t, A, and z are to be computed the following formulas

are more advantageous :
—

K^= sin (8 + <^) sin (8 - ^),

sm t= 7—:—s' COS A = T' sm z = —.—k> (2

)

cos <j> sin 8 cos i^ sin S ' '

J<r , cos8 IT
:tan f^ „ , s' tan A = —j^i tan 2=

Sin ip COS A sin ^

g. Hour angle, zenith distance, and parallactic angle for transit of a

star across prime vertical.

In this case the azimuth angle is 90° and the required quantities are given by

the formulas
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i. Differential formulas.

The general differential relations for the altitude and azimuth and the declina-

tion and hour angle systems of coordinates are :

—
dz-=— cos g d^-\- sin q cos h dt -\- cos A d^, ,-.

sin z dA = sin q d^-\- cos q cos 8 di — cos z sin A d^.

d8 = — cos qJz-\- sin q sin z dA -{- cos t d^, ,^
cos 8df= sin q dz -\- cos q sin z dA -{- sin 8 sin / d(l>.

The following values derived from (i) are of interest as showing the dependence

of z and ^ on / in special cases :
—

(dz\ (dA\
\dt) \dt)

cos S
For a star in the meridian = o, = '^rrvsin z

For a star in the prime vertical ^ cos ^, = sin
<f>,

For a star at elongation = cos 8, = o.

3. Relations of Different Kinds of Time used in Astronomy.

a. The sidereal and solar days.

The sidereal day is the interval between two successive transits of the vernal

equinox over the same meridian. The sidereal time at any instant is the hour

angle of the vernal equinox reckoned from the meridian towards the west from o

to 24 hours. The sidereal time at any place is o when the vernal equinox is in

the meridian of that place.

The solar day is the interval between two successive transits of the sun across

any meridian ; and the solar time at any instant is the hour angle of the sun at

that instant. The solar day begins at any place when the sun is in the meridian

of that place.

The mean solar day is the interval between two successive transits over the

same meridian of a fictitious sun, called the mean sun, which is assumed to move

uniformly in the equator at such a rate that it returns to the vernal equinox at

the same instant with the actual sun.

Time reckoned with respect to the actual sun is called apparent time, while

that reckoned with respect to the mean sun is called mean time. The difference

between apparent and mean time, which amounts at most to about 16"', is called

the equation of time. This quantity is given for every day in the year in

ephemerides.

The sidereal time when a star or other object crosses the meridian is called the

right ascension of the object. The right ascension of the mean sun is also called

the sidereal time of mean noon. This time is given for every day in the year in

ephemerides for particular meridians, and can be found for any meridian by allow-

ing for the difference in longitude.

The time to which ephemerides and most astronomical calculations are referred
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is the solar day, beginning at noon, and divided to hours numbered continuously

from o* to 24*. This is called astronomical time ; and such a day is called the

astronomical day. It begins, therefore, 12 hours later than the civil day.

b. Relation of apparent and mean time.

A = apparent time = hour angle of real sun,

M= mean time ^ hour angle of mean sun,

E= equation of time.

M= A-\-£.

In the use of this relation, £ may be most conveniently derived (by interpola-

tion for the place of observation) from an ephemeris.

c. Relation of sidereal and mean solar intervals of time.

/= interval of mean solar time,

/' ^ corresponding interval in sidereal time,

r= the ratio of the tropical year expressed in sidereal days to the tropical

year expressed in mean solar days

366.2422 _ Q= '^—-—= 1.002738.
365.2422

/' = rl=z /+ (r - i) /= 7+ 0.002738 I
r= r-i 7' = /' - (i - r-') r = I' - 0.002730 7'.

Tables for making such calculations are usually given in ephemerides (see, for

example, the American Ephemeris). Short tables for this purpose are Tables

34 and 35 of this volume.

Frequent reference is made to the relations

. 24* sidereal time = 23* 56"' o4.'o9i solar time,

24* mean time = 24* 03" s6.'555 sidereal time.

d. Interconversion of sidereal and mean solar time.

T„^ mean time at any place,

Tg = corresponding sidereal time,

^ right ascension of meridian of the place,

A = right ascension of mean sun for place and date,

^ sidereal time of mean noon for place and date.

T,= A -{- T„ expressed in sidereal time.

T^= (T, — A) expressed in mean time.

The quantity A is given in the ephemerides for particular meridians, and can

be found by interpolation for any meridian whose longitude with respect to the

meridian of the ephemeris is known. The formulas assume that A is taken out

of the ephemeris for the next preceding mean noon.
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e. Relation of sidereal time to the right ascension and hour angle

of a star.

T,= sidereal time at any place,

=: right ascension of the meridian of the place,

a= right ascension of a star,

t= the hour angle of the star at the time T,.

T.= a-{-f, t=T.-a.

4. Determination of Time.

a. By meridian transits.

A determination of time consists in finding the correction to the clock, chro-

nometer, or watch used to record time. If 7J denote the true time at any place

of an event, T the corresponding observed clock time, and AT' the clock correc-

tion,

To = T-\- b.T.

The simplest way to determine the clock correction is to observe the transit of

a star, whose right ascension is known, across the meridian. In this case the

true time 7J = a, the right ascension of the star ; and if T is the observed clock

time of the transit,

A7'=a— T.

Meridian transits of stars may be observed by means of a theodolite or transit

instrument mounted so that its telescope describes the meridian when rotated

about its horizontal axis. The meridian transit instrument is specially designed

for this purpose, and affords the most precise method of determining time.*

Since it is impossible to place the telescope of such an instrument exactly in

the meridian, it is essential in precise work to determine certain constants, which

define this defect of adjustment, along with the clock correction. These con-

stants are the azimuth of the telescope when in the horizon, the inclination of the

horizontal axis of the telescope, and the error of collimation of the telescope.!

Let
a= azimuth constant,

b = inclination or level constant,

c= collimation constant.

a is considered plus when the instrument points east of south ; l> is plus when

the west end of the rotation axis is the higher ; and c is intrinsically plus when
the star observed crosses the thread (or threads) too soon from lack of collima-

tion. (The latter constant is generally referred to the clamp or circle on the

horizontal axis of the instrument.)

* The best treatise on the theory and use of this instrument is to be found in Chauvenet's

Manual of Spherical and Practical Astronomy, which should be consulted by one desiring to go

into the details of the subject.

t Other equivalent constants may be used, but those given are most commonly employed.
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Also let

<^ =: latitude of the place,

8 = declination of star observed,

a = right ascension of star observed,

7"= observed clock time of star's transit,

AT=: the clock correction at an assumed epoch 7J,

r= the rate of the clock, or other timepiece,

M sin (d) — 8)^ =
J^ \, s

^= the " azimuth factor,"
cos d '

£= S2l(±^^ the " level factor."
cos o '

C= j= the " collimation factor."
cos d

Then, when a, b, c are small (conveniently less than lo' each, and in ordinary

practice less than i' each),

T-\- b^T-\- Aa -\- Bb \- Cc -\- r (T- TJ) = a.

This is known as Mayer's formula for the computation of time from star transits.

The quantity Bb is generally observed directly with a striding level. Assuming

it to be known and combined with T, the above equation gives

^T-^Aa-\-Cc-\-r{T-T^) = a.-T. (i)

This equation involves four unknown quantities, AT] a, c, and r; so that in

general it will be essential to observe at least four different stars in order to get

the objective quantity ^T. Where great precision is not needed, the effect of the

rate, for short intervals of time, may be ignored, and the collimation c may be

rendered insignificant by adjustment. Then the equation (i) is simplified in

A7'+ Aa — a,— T. (2)

This shows that observations of two stars of different declinations will suffice to

give at: Since the factor A is plus for stars south of the zenith (in north lati-

tude) and minus for stars north of the zenith, if stars be so chosen as to make the

two values of A equal numerically but of opposite signs, AT' will result from the

mean of two equations of the form (2). With good instrumental adjustments

(J)
and c small), this simple sort of observation with a theodolite will give A 7* to

the nearest second.

A still better plan for approximate determination of time is to observe a pair of

north and south stars as above, and then reverse the telescope and observe an-

othei pair similarly situated, since the remaining error of collimation will be -partly

if not wholly eliminated. Indeed, a well selected and well observed set of four

stars will give the error of the timepiece used within a half second or less. This

method is especially available to geographers who may desire such an approxi-

mate value of the timepiece correction for use in determining azimuth. It will

suffice in the application of the method to set up the instrument (theodolite or tran-

sit) in the vertical plane of Polaris, which is always close enough to the meridian.

The determination will then proceed according to the following programme :
—
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1. Observe time of transit of a star south of zenith,

2. Observe time of transit of a star north of zenith.

Reverse telescope,

3. Observe time of transit of another star south of zenith,

4. Observe time of transit of another star north of zenith.

Each star observation will give an equation of the form (i), and the mean oi

the four resulting equations is

^44 4 4

Now the coefficient of r in this equation may be always made zero by taking

for the epoch 7J the mean of the observed times T. Likewise, ^A and SC may

be made small by suitably selected stars, since two of the A'^ and C's are positive

and two negative. The value \ S(a — T) is thus always a close approximation to

AT'for the epoch Tq^\ 1,T, when %A and %C approximate to zero. But if these

sums are not small, approximate values of a and c may be found from the four

equations of the form (i), neglecting the rate, and these substituted in the above

formula will give all needful precision.

For refined work, as in determining differences of longitude, several groups of

stars are observed, half of them with the telescope in one position and half in the

reverse position, and the quantities LT, a, c, and r are computed by the method

of least squares. In such work it is always advantageous to select the stars with

a view to making the sums of the azimuth and collimation coefficients approxi-

mate to zero, since this gives the highest precision and entails the simplest com-

putations.*

b. By a single observed altitude of a star.

An approximate determination of time, often sufficient for the purposes of the

geographer, may be had by observing the altitude or zenith distance of a known

star. The method requires also a knowledge of the latitude of the place.

Let

Zi= the observed zenith distance of the star,

Ji= the refraction,

z= the true zenith distance of the star,

= z, + Ji,

a, 8, = the right ascension and declination of the star,

/= hour angle of star at time of observation,

T= observed time when Zi is measured,

A7'= correction to timepiece,

<^ = latitude of place.

Then the hour angle / may be computed by

„ sin (o- — (^) sin (o- — S)
1 /jL I s I s

tan" i /= ^ ^-^—7—^^—r—^, o-= Ufk J_ 8 _L. 2).^ cos 0- cos (a — z) "'^^
' '

^

• For details of theory and practice in time work done according to this plan see Bulletin 49
U. S. Geological Survey.
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Having the hour angle the clock correction AT is given by

AT=a-\-(— T,

in which all terms must be expressed in the same unit ; /. e., in sidereal or in mean
time.

The refraction R may be taken from Table 31.

The most advantageous position of the star observed, so far as the effect of an

error in the measured quantity Zj is concerned, is in the prime vertical, but stars

near the horizon should be avoided on account of uncertainties in refraction.

The least favorable position of the star is in the meridian.

Compared with the preceding method the present method is inferior in preci-

sion, but it is often available when the other cannot be applied.

c. By equal altitudes of a star.

This method is an obvious extension of the preceding method, and has the

advantage of eliminating the effect of constant instrumental errors in the meas-

ured altitudes or zenith distances. Thus it is plain that the mean of the times

when a (fixed) star has the same altitude east and west of the meridian, whether

one can measure that altitude correctly or not, is the time of meridian transit.

This method may, therefore, give a good approximation to the timepiece

correction when nothing better than an engineer's transit, whose telescope can

be clamped, is available. When the instrument has a vertical circle (or when a

sextant is used) a series of altitudes may be observed before meridian passage of

the star, and a similar series in the reverse order with equal altitudes respectively

after meridian passage. The half sums of the times of equal altitudes on the two

sides of the meridian will give a series of values for the time of meridian transit

from which the precision attained may be inferred.

This method is frequently applied to the sun, observations being made before

.md after noon. For the theory of the corrections essential in this case on

account of the changing position of the sun, on account of inequalities in the

observed altitudes, etc., the reader must be referred to special treatises on prac-

tical astronomy.*

5. Determination of Latitude.

a. By meridian altitudes.

The readiest method of determining the latitude of a place is to measure the

meridian zenith distance or altitude of a known star. When precision is not re-

quired this process is a very simple one, since it is only essential to follow a (fixed)

star near the meridian until its altitude is greatest, or zenith distance least. Thus,

if the observed zenith distance is «i, the true zenith distance z, and the refrao

tion R,
z=:zi-\-R;

* The best work of this kind is Chauvenet's Manual ofSpherical and Practical Astronomy. It

should be consulted by all persons desiring a knowledge of the details of practical astronomy.



Ixxviii ASTRONOMY.

and if the declination of the star is S and the latitude of the place <^,

according as the star is south or north of the zenith.

A more accurate application of the same principle is to observe the altitudes

of a circumpolar star at upper and lower culmination (above and below the pole).

Th«; mean of these altitudes, corrected for refraction, is the latitude of the place.

This process, it will be observed, does not require a knowledge of the star's

declination.

b. By the measured altitude of a star at a knov^n time.

h = measured altitude corrected for refraction,

Tg = observed sidereal time,

a,^=z right ascension and declination of star,

t= hour angle of star,

<^ = latitude of place.

Then (^ may be computed by means of the following formulas :—
t=T,-a,

t,„ o tan 8 ^„^ sin h sin j8tan ^ = -, cos y = -.—g-t:,

cos r sin 8

<^ = /8 ± y.

In the application of these /3 may be taken numerically less than 90°, and since

t may also be taken less than 90°, ^8 may be taken with the same sign as 8. y is

indeterminate as to sign analytically, but whether it should be taken as positive

or negative can be decided in general by an approximate knowledge of the lati-

tude, which is always had except in localities near the equator.

The most advantageous position of a star in determining latitude by this

method is in the meridian, and the least advantageous in the prime vertical.

When a series of observations on the same star is made, they should be equally

distributed about the meridian ; and when more than one star is observed it is

advantageous to observe equal numbers of them on the north and south of the

zenith.

The application of this method to the pole star is especially well adapted to

the means available to the geographer and engineer, namely, a good theodolite

and a good timepiece. In this case the following simple formula for the latitude

may be used :
—

<^ = ^ — / cos / -|- \p'^ sin i" sin" t tan h,

where/ is the polar distance of Polaris in seconds (about 5400"), and the other

symbols have the same meaning as defined above. Tables giving the logarithms

of/ and \f' sin i" are published in the American Ephemeris.
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c. By the zenith telescope.

The zenith telescope furnishes the most precise means known for the deter-

mination of the latitude of a place. For the theory of the instrument and method

when applied to refined work the reader must be referred to special treatises.*

It will suffice here to state the principle of the method, which may sometimes be -

advantageously applied by the geographer. Let z, be the meridian zenith distance

of a star south of the zenith, and z„ the meridian zenith distance of another star

north of the zenith. Let 8, and S„ denote the declinations of these stars respec-

tively. Then
«,= <^ — S„

^»= 8» — <^,

whence

,^ = J(8.+ 8„) + i(?,-z„)-

It appears, therefore, that this method requires only that the difTerence (z, — z„)

be measured. Herein lies the advantage of the method, since that difference

may be made small by a suitable selection of pairs of stars. With the zenith

telescope the stars are so chosen that the difference (z^ — «„) may be measured by

means of a micrometer in the telescope.

The essential principles and advantages of this method may be realized also

with a theodolite, or other telescope, to which a vertical circle is attached, the

difference (2, — 0„) being measured on the circle ; and a determination of latitude

within 5" or less is thus easy with small theodolites of the best class (i. e., with

those whose circles read to 10" or less by opposite verniers or microscopes).

6. Determination of Azimuth.

a. By observation of a star at a known time.

T, = sidereal time of observation,

a, 8= right ascension and declination of star observed,

t= hour angle of star,

= T, — a,

<j> = latitude of place,

A ^ azimuth of the star at the time 7] counted from the south around by the

west through 360°.

The azimuth A may be computed by the formulas

a= sec <^ cot 8, l>= tan </> cot 8, -

a sin f (i)

t^" ^ = -
I - ^ cos /

The angle A will fall in the same semicircle as /, and A is thus determined by its

tangent without ambiguity. The quantities a and 6 will be sensibly constant for

• Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best.
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a given star and date ; and hence they need be computed but once for a series of

observations on the same star on one date.

The effects of small errors A(, A^, and AS in the assumed time, latitude, and

declination are expressed by

cos S cos o , . ^ . ,
sin « . .

; A/, — sm A cot z Ad, -;

—

- As,
sin z ' ^' sm z '

respectively, where z and ^ are the zenith distance and parallactic angle of the

star. Hence the effect of Aif will vanish for a star at elongation ; the effect of

A(fi vanishes for a star in the meridian, and is always small (in middle latitudes)

for a close circumpolar star ; the effect of AS vanishes for a star in the meridian..

It appears advantageous, therefore, to observe for azimuth (in middle latitudes)

close circumpolar stars at elongations, since the effect of the time error is then

least, and the effects of errors in the latitude and declination are small and may
be eliminated entirely by observing the same star at both elongations.

The hour angle 4, the azimuth Ag, and the altitude A^ of a star at elongation

are given by the formulas (2) of section 2,/. Those best suited to the purpose

are
^^ = sin (8 + ^) sin (8 - <^),

IT , cos 8 , sin <i (is
^^"^- = sin./,cosS

' tan^.= -^, tan /5. =^- W

Knowing the time of elongation of a close circumpolar star, it suffices for many

purposes to observe the angle between the star and some reference terrestrial

mark at or in the vicinity of that time.

For precise determinations of azimuth it is customary to observe a star near

its elongation repeatedly, thus obtaining a series of results whose mean will be

sensibly free from errors of observation and errors due to instrumental defects.

The computation of the azimuth A may be made accurately in all cases by the

formulas (i) ; but when a close circumpolar star is observed near elongation, it

may be more convenient to use the following formulas :
—

M^{t — 4), or the interval before or after elongation at the time of

observation,

A^ =^{A — A^, or the diffeirence in azimuths of the star at the time

of elongation and at the time of observation, (3)

'^^ — 2 p" sin 4 cos </.
^^^^ ^2 ip'J sin 4 tan i, cos <l>^'^' >

* To the same order of approximation one may write in tlie first term of this expression

(2 sin^ ^ ^f\
which latter is the most convenient form when tables giving log —

-r,
—- for the argument A/

in time are at hand. Such tables are given in Chauvenet's Manual of Spherical and Practical

Astronomy (for full title see p. Ixxxii), and in Formcln und HUlfstafeln fur Geographische Orts-

bcstimmungen, von Dr. Th. Albrecht. Leipzig; Wilhelm Engelmann, 4to, 2d ed., 1879.
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This last formula gives AA in seconds of arc when Aj? is expressed in seconds

of time ; At is considered positive in all cases (in the use of the formula), and

with this convention the positive sign is used when the star is between either

elongation and upper culmination, and the negative sign when the star is between

either elongation and lower culmination. For a given star, place, and date the

coefficients of (A^y and (Ar)° will be sensibly constant and their logarithms will

thus be constant for a series of observations of a star on any date. By reason of

the large factors (p" = 206 264."8)^ and tan 4 in the denominator of the second

term, it will be very small unless A^ is large. Hence this term may often be

neglected. Using both terms, the formula will give AA for Polaris to the nearest

o."oi when A/ < 40*" and when observations are made in middle latitudes.

By reference to formulas (2) of section 2,/, it is seen that

sin S cos 8 sin^ 8 cos 8

sin 4 cos <j> -^ '

sin 8 cos 8 sin" 8 cos" 8 sin <ji
•

sin 4 tan 4 cos (j>
^" '

X" = sin (8 + </>) sin (8 - <^).*

b. By an observed altitude of a star.

A= true altitude of star observed ; i. e., the observed altitude less the refrac-

tion,

(^ = latitude of place,

p= polar distance of star,

A = azimuth of star.

tan" \A = sin(^-0)sin(cr-/^)
cos o- cos (cr — /)

The most advantageous position of the star, on account of possible error in the

observed value of ^, is that in which sin ^ is a maximum. This position is then

at elongation for stars which elongate, in the prime vertical for stars which cross

this great circle, and in the horizon for a star which neither elongates nor crosses

the prime vertical. A star will elongate when J> < 90° — </> ; it will cross the

prime vertical when/ lies between 90° — <^ and 90°
; and it will neither elongate

nor cross the prime vertical when/ >9o°, or when the declination (8) of the star

is negative.

c. By equal altitudes of a star.

By this method, when a fixed star is observed first east of the meridian and

then west of the meridian at the same altitude, the direction of the meridian will

* In precise work the computed azimuth requires the following correction for daily aberration,

namely:—
cos <p

A^ = -o."32-^^cos^,

where A is to be reckoned from the south by way of the west through 360°.
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obviously be given by the mean of the azimuth circle readings for the two

observed directions. This process will thus give the direction of the meridian

free from the effect of any instrumental errors common to the equal altitudes

observed. Neither does it require any knowledge of the star's position (right

ascension and declination). It is theirefore available to one provided with no-

thing but an instrument for measuring altitudes and azimuths, and is susceptible

of considerable precision when a series of such equal altitudes is carefully referred

to a terrestrial mark.

When the sun is observed, it is essential to take account of its change in

declination between the first and the second observation. Let Ai and A^ be the

true azimuths counted from the meridian toward the east and west respectively

at the times /j and 4 of the two observations. Also, let A8 be the increase in

declination of the sun in the interval (4 — /i). Then

A2 — Ai
cos cf} sin ^(^2 — fi)

Calling the azimuth circle readings for the east and west observations ^1 and i?2.

respectively, the resulting azimuths are

A, = i(i?2 - i?i) - i(A, - A,),

A,= i(i?2 - R,) + l(A, - Ai).
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THEORY OF ERRORS.

I. Laws of Error.

The theory of errors is that branch of mathematical science which considers the

nature and extent of errors in derived quantities due to errors in the data on

which such quantities depend. A law of error is a relation between the magni-

tude of an error and the probability of its occurrence. The simplest case of a

law of error is that in which all possible errors (in the system of errors) are

equally likely to occur. An example of such a case is had in the errors of'

tabular logarithms, natural trigonometric functions, etc. ; all errors from zero to

a half unit in the last tabular place being equally likely to occur.

When quantities subject to errors following simple laws are combined in any

manner, the law of error of the quantity resulting from the combination is in

general more complex than that of either component.

Let £ denote the magnitude of any error in a system of errors whose law of

error is defined by 4)(/). Then if c vary continuously the probability of its

occurrence will be expressed by <t>(^)dc. If e vary continuously between equal

positive and negative limits whose magnitude is a, the sum of all the probabili-

ties <^(e)(/£ must be unity, or

<l>(e) de = I.s*

For the case of tabular logarithms, etc., alluded to above, ^(i) ^ c, a constant

whose value is 1/(2 a) = i, since a = 0.5.

For the case of a logarithm interpolated between two consecutive tabular

values, by the formula v= Vi-\- (v2 — v^ t=Vi(i. — t) -\- v^ t, where Vi and

v^ are the tabular values, and t the interval between v^ and the derived value

V, ^(c) has the following remarkable forms when the extra decimals (practically

the first of them) in (v^ — Vi) t are retained :
—

<^(£)= .
° "^ ^

for values of e between — J and — (i — 0>
(I — t) t

=—— for values of e between — (i — f) and+ ft — ^)> (^)

= ,
^ ~

^ for values of c between + (i ~ ^) ^^^+ i-
(I — r; /
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It thus appears that <^(e) in this case is represented by the upper base and the

two sides of a trapezoid.

When, as is usually the practice, the quantity (wj — v^ t is rounded to the

nearest unit of thie last tabular place, <^(i) becomes more complex, but is still

represented by a series of straight lines. It is worthy of remark that the latter

species of interpolated value is considerably less precise than the former, wherein

an additional figure beyond the last tabular place is retained.

When an infinite number of infinitesimal errors, each subject to the law of con-

stant probability and each as likely to be positive as negative, are combined by

addition, the law of the resultant error is of remarkable simplicity and generality.

It is expressed by

where e is the Napierian base, tt = 3.14159 -|-, and A is a constant dependent on

the relative magnitude of the errors in the system. This is the law of error of

least squares. It is the law followed more or less closely by most species

of observational errors. Its general use is justified by experience rather than

by mathematical deduction.

a. Probable, mean, and average errors.

For the purposes of comparison of different systems of errors following the

same law, three different terms are in use. These are th& probable error,* or that

error in the system which is as likely to be exceeded as not ; the mean error, or

that error which is the square root of the mean of the squares of all errors in the

system ; and the average error, which is the average, regardless of sign, of all

errors in the system. Denote these errors by e^,, e„, e„, respectively. Then in all

systems in which positive and negative errors of equal magnitude are equally

likely to occur, and in which the limits of error are denoted by — a and -|- a, the

analytical definitions of the probable, mean, and average errors are :
—

— «P o -\- ^ +

«

J*<^(.)
d, = J4,{i) d. = f4>(e) de=

J^(£)
d.= i,

— a — e^ o -]- £p

J_ J.
^'^

-\- a -\- a

^m= f4>(A ^ di, e„= jr.^(£) . d..

* The reader should observe that the word probable is here used in a specially technical sense.

Thus, the probable error is not " the most probable error,'' nor " the most probable value of the

actual error," etc., as commonly interpreted.
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b. Probable, mean, average, and maximum actual errors of interpo-
lated logarithms, trigonometric functions, etc.

When values of logarithms, etc., are interpolated from numerical tables by means

of first differences, as explained above, the probable and other errors depend on

the magnitude of the interpolating factor. Thus, the interpolated value is

V=Vi-\-{v2 — Wi) f

where v^ and v^ are consecutive tabular values and / is the interpolating factor.

For the species of interpolated value wherein the quantity (wa — v-i) t is not

rounded to the nearest unit of the last tabular place (or wherein the next figure

beyond that place is retained) the maximum possible actual error is 0.5 of a unit

of the last tabular place, and formulas (i) and (3) show that the probable, mean,

and average errors are given by the following expressions :
—

£p ::= i (i — ^) for t between o and \,

= i — i V2/ (i — /) for t between \ and §,

= J ^ for ^ between f and i.

V — {\ — 2 ff U
96(1-/)^ s

I — (i - 2/)' ^ ,

£. = 7 -jr-T for t between o and *," 24 (i — /) ^ '"

= -—7^^ Ts-r for / between \ and i.

24 (i — /) ^ *

It thus appears that the probable error of an interpolated value of the species

under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place

as / increases from o to 0.5. Hence such interpolated values are more precise

than tabular values.

For the species of interpolated values ordinarily used, wherein (z/j — v^ t is

rounded to the nearest unit of the last tabular place, the probable, mean, and

average errors are greater than the corresponding errors for tabular values. The

laws of error for this ordinary species of interpolated value are similar to but in

general more complex than those defined by equations (i). It must suifice here

to give the practical results which flow from these laws for special values of the

interpolating factor t.* The following table gives the probable, mean, average,

and maximum actual error of such interpolated values iox t^ \, \, \, . . . ^. It

will be observed that /= i corresponds to a tabular value.

* For the theory of the errors of this species of interpolated values see Annals ofMathematics,

vol. ii. pp. 54-59.
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Characteristic Errors of Interpolated Logarithms, etc.

Interpolating

factor

t
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equations. Thus, let x,y,z,. . . be the observed quantities with weights /, q,

r, . . . . Let the corrections to the observed quantities be denoted by ^x, A_j/,

Az, . . . ; so that the corrected quantities are x -\- A^c, y -\- ^y, z+ Az, . . . . Let

the disposable quantities whose values are to be determined along with the correc-

tions be denoted by ^, % C, . . . . Then, the theoretical conditions which must be

satisfied hy x -\- i^x, y -\- A_y, z -|- Az, . . . and by f, 17, ^, . . . may be symbolized

by

K {^, r,, i, . . . X -\- ^x, J/ -f Aj, 4- Aa, . . .) = o. (4)

Subject to the conditions specified by the n equations (4), we must also have

p (A»)" -|- q (Aj')* -\- r {p^zf + • . . = a minimum (5)= u, say.

Equations (4) and (5) contain the solution of every problem of adjustment by

the method of least squares. Two examples may suffice to illustrate their use.

First, take the case of the observed angles of a triangle alluded to above.

Calling the observed angles x, y, z, we have

x-}-A.x-{-y-j-Ay-\-z-^iiZ^ 180° + spherical excess,

or ,

Ax^ Ay -\- Az = 180° 4" spherical excess — (x -\-y -{- z)

= ^, say.

This is the only condition of the form (4). The problem is completely stated,

then, in the two equations

Ax -\- Ay-\- Az= c

f {Aocf -\- q {Ayf -\- r {Aif = a min. = u.

To solve this problem the simplest mode of procedure is to eliminate one of the

corrections by means of the first equation and then make u a minimum. Thus,

eliminating Az, there results

u =:p {^xf -\- q {Ayy -\- r (c — Ax — Ay^.

The conditions for a minimum of u are :
—

9u
9Ax
9u

= (p -{- r) Ax -\- rAy — re^ o,

:=. rAx -\- (^ -\- r) Ay — rt:= o ;9Ay

and these give, in connection with the value Az^ c — Ax — Ay,

Ax=Q, Ay=Q; Az=^.

where

Q=
' + - + -p^ q^ r

When the weights are equal, or when / ^ ^= r, the corrections are—
Ax = Ay =. Az = \ e.
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Secondly, take the case, also alluded to above, of the observed sum and the

observed difference of two numbers. Denote the numbers by $ and 17, the latter

being the smaller. Let the observed values of the sum (i + '?) be denoted

by xi, X2, . . . x^ and their weights pi, A, • •A respectively. Likewise, call

the observed values of the difference (^ — 17), yi, y^, . . . y^ and their weights

fi, ?2 • • • ?» respectively. Then there will hs m -\- n equations of the type (4),

namely :
—

^ + 17 - (^1 + A^i) = o,

^-\-r, — {x2-\- i^x^ = o,

(a)

and the minimum equation is

u =A (AxO» +A (^x,y + . . . + s-i (Aji)"+ 4'2 (Ajs)'+ . . . = a min. (b)

The equations of group (a) give

A.XI= ^ -\- rj
— xj,

Ax2= i-\-r] — Xi,

(c)

Ayi= ^ -V - yi,

^yi= ^ — v— yi,

•
'

•
',

and these values in (b) give

u=A(^+ v- *i)'+ • + ^1 (^ - v-y.y-\-- • (d)

Thus it appears that all conditions will be satisfied if f and 17 are so determined

as to make u in (d) a minimum. Hence, using square brackets to denote sum-

mation of like quantities, the values of ^ and 77 must be found from

ll
= [/ + ?] ^+[/- rf ^ - l>*+ ^.y] = o,

(e)

-^= [/-?] f +[/ + ?] V -[/•*- ?J'] = o-

Equations (e) give f and rj, and these substituted in (c) will give the corrections

to the observed quantities.

b. Relation of probable, mean, and average errors.

The introduction of the law of error (2) in equations (3) furnishes the following

relations, when it is assumed that the limits of possible error are —00 and +00 :

€p= 0.6745 e„. = 0.8453 'a- (6)



THEORY OF ERRORS. Ixxxix

c. Case of a single unknown quantity.

The case of a single unknown quantity whose observed values are of equal or

unequal weight is comprised in the following formulas :—
Xi, X2, . . . x^=^ observed values of unknown quantity,

AA • • /m = the weights of x^, ^2, . . .

»i, Vi, . . . v^ = most probable corrections to Xi, X2, . . .

X = most probable value of the unknown quantity,

m = the number of independent observations.

Then the conditional equations (4) are

X — Xt_-=^ Vi,

X ^— X^ — V^f

•^ *m ^— ^m ;

the minimum equation (5) is

A»i' + A^'2''+ . . . = iJv'^ = \J{x - a^OT = a min.,

where «= i, 2, . . . /«, and

_ P\Xl +/2^2+ • • -Pn^m _ \j>x\

A+A + ..-A "[/>]

When the weights are equal,A =P%= • • =pm> and

M

or the arithmetic mean of the observed values.

Weight of Jc = [/] when the/'j are unequal,

= m when the/V are equal.

Mean error of an observed value of weight unity= y _-' for unequal weights,

. l\vv\~ . , . ,=Y __ • for equal weights.

/ \pvvXMean error of an observed value of weightp^y , _ \ . for unequal weights.

/ [pvv]
Mean error of a; = y -,

—_ ^r- , for unequal weights,

— i/— IZ_J—^ for equal weights.
\ m{m — 1)

The corresponding probable errors are found by multiplying these values by

0.6745. See equation (6).
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A formula for the average error sometimes useful is

Average error = j , _ \ f^ ^°^ unequal weights.

[v]= ./ / —s for equal weights.\m (m — 1)
^ °

In these the residuals v are all taken with the same sign. A sufficient approxi-

H
mation in many cases of equal weights is ^^^

; but the above formulas dependent

on the squares of the residuals are in general more precise.

An important check on the computation of x is [pv] = o ; i. e., the sum of the

residuals v, each multiplied by its weight, is zero if the computation is correct.

d. Case of observed function of several unknown quantities ^,i},K--..

A case of frequent occurrence, and one which includes the preceding case, is

that in which a function of several unknown quantities is observed. Thus, for

example, the observed time of passage of a star across the middle thread of a

transit instrument is a function of the azimuth and collimation of the transit

instrument and the error of the timepiece used. In cases of this kind the con-

ditional equations of the type (4) assume the form

F{i, 17, ^ x-\- ^x):=o•,

that is, each of them contains but one observed quantity x along with several

disposable (disposable in satisfying the minimum equation) quantities f, 17, ^ . . . .

The process of solution in this case consists in eliminating the corrections

tyxi, 1^X2, . . . from the above conditional equations, substituting their values in

the minimum equation (5), and then placing the differential coefficients of u with

respect to i, rj, ^ .,. . separately equal to zero. There will thus result as many
independent equations as there are unknown quantities of the class in which f, 1/,

t . fall, the remaining unknown quantities Axi, Ax^, . . . , or the corrections to

the observed values, are then found from the conditional equations.

In many applications it happens that the conditional equations

F(^,
v, C • • • x-\- Ax) = o,

are not of the linear form. But they may be rendered linear in the following

manner. First, eliminate the quantities x -\- Ax from the conditional equations.

The result of this elimination may be written

/(^. V, ^ • • ) — X — Ax = o.

Secondly, put

^=fo Af,

where fo> Vo, • are approximate values of f, 17, ... , found in any manner, and
A|, Arj, . . . are corrections thereto. Then supposing the approximate values
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loi %» • . SO close that we may neglect the squares, products, and higher powers
of Af, Arj, . . . , Taylor's series gives

/(4%, fo, ...)+ sf ^^+ |Ja, + ||^a^+. ^^-A^=o,

which is linear with respect to the corrections Af, Ai;, . , . . For brevity, and for

the sake of conformity with notation generally used, put

n = x — /(fo, Vo> &•)>
V = A^,

x= ^t, y= i^% «= A^,—
Then the conditional equations will assume the form

ax -\- by -\- cz -\- . . . — n = v,

and if they are m in number they may be written individually thus :—
aix -\- b^ -\- c-^z -\- . . . — ni = Vi,

"m -{- ^m + "^m + • — «m= Z'm-

The minimum equation (5) becomes

u = [pv'^ = \p{ax \- by -\- cz -\- . . . — «)^ ;

so that placing -^, -y^, -^, . . . separately equal to zero will give as many

independent equations as there are values of x, y, z, . , . . The resulting equa-

tions are in the usual (Gaiissian) notation of least squares :
—

\^ad\x -\- \pal)]y -\- \pac\ z -\- . . . — [^an] ^ o,

[pab] +\jbb-] +[pbc] -{-...-[j,i„] = o, (b)

\jac] -^lpbc-\ -\-\Jcc-\ +...-[/^]=o.

The equations (a) are sometimes called observation-equations. The absolute

term n is called the observed quantity. It is always equal to the observed quan-

tity minus the computed quantity/ (^0, %, f . • •)> which latter is assumed to be

free from errors of observation. The term v is called the residual. It is some-

times, though quite erroneously, replaced by zero in the equations (a).

The equations (b) are called normal equations. They are usually formed

directly from equations (a) by the following process : Multiply each equation by

the coefifiGient of x and by the weight/ of the v in the same equation, and add

the products. The result is the first equation of (b), or the normal equation in x.

. The normal equations my, z, . . . are found in a similar manner.
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A noteworthy peculiarity of the normal equations is their symmetry. Hence in

forming equations (b) from (a) it is not essential to compute all the coefficients of

X, y,z, . . . except in the first equation.

Checks on the computed values of the numerical terms in the normal equations

are found thus : Add the coefficients a, b, c, . . . of x, y, z, . . . in (a) and put

«i + ^1 + <^i + • • = •?!,

«2 + ^2+ "^2 + • • • ^ -^2.

Multiply each of these, first, by its pa ; secondly, by its//5, etc., and then add the

products, The results are

[paa\ + \J>ab'\ -\- [J)ac\ -|- . . . = \_pas\

\Jab] + \jbb-\ + [pbc] + ... = [pbs]

These will check the coefficients of x, y, z, . , . in (b). To check the absolute

terms, multiply each of the above sums by its np, and add the products. The

result is

[pan] + [pbn] + [Jen] + . . . = {psn\,

which must be satisfied if the absolute terms are correct.

Checks on the computation of x, y, z, . . . from (b) and of v^, v^, • . . from (a)

are furnished by

\_pav] = o, \_pbv\ == o, \_pcv\ = 0, ....

To get the unknowns x, y, z, and their weights simultaneously, the best method

of procedure is, in general, the following : For brevity replace the absolute terms

in (b) by A, £, C, . . . respectively. Then the solution of (b) will be expressed

by
X=:aiA-^M + yiC+...,
7 = "2 + A + 72 + • • • ,

(C)

« z= 03 4-^3 -j- 73 + . . . ,

in which oj, j8i, yi, . . . are numerical quantities ; and

weight of ^^ —
>

weight of ^= 7T> (,d)

Pi

weight of 2= —

)

To compute mean (and hence probable) errors the following formulas apply :
—

m = the number of observed quantities «

= number of equations of condition,

fjL =; number of the quantities x, y, z, . . .

c„ = mean error of an observed quantity («) of weight unity,

tp = corresponding probable error= 0.6745 e„.
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for unequal weights,

__ / \yv\
£^^ equal weights,

y m — \x.

Mean error of any observed quantity («) of weight/ = -^>

Mean error of ^= e„ y/^^

Mean error of j' =: e„
\f^^^

Mean error of 2: = «„ v'i^,

. . .
,

where oj, ^ji 7s( • • • a-re defined by equations (c) and (d) above.

e. Case of functions of several observed quantities x, y, z, . . . .

This case is that in which the conditional equations (4) contain no disposable

quantities f, 17, ^, . . . . It is the opposite extreme to that represented by the case

of the preceding section.* It finds its most important and extensive application

in the adjustment of triangulation, wherein the observed quantities are the angles

and bases of the triangulation, and the conditions (4) arise from the geometrical

relations which the observed quantities plus their respective corrections mus"-

satisfy.

An outline of the general method of procedure in this case is the following :
—

The first step consists in stating the conditional equations and in reducing

them to the linear form if they are not originally so. The form in which they

present themselves is (4) with ^, r/, (, . . . suppressed, or

If(xi -\- i\ Xi, X2 -\- A X2, Xs -{- \ Xs, . . . ) =:: o,

wherein x, y, z, . . . of (4) are replaced by x^, x^, x^ . . . for the purpose of sim-

plicity in the sequel. If this equation is not linear, Taylor's series gives

9jF 9F
F(x^, x„x,...)-\-Q^^Xy^-^^^x, = ... = o,

since the method supposes that the squares, products, etc., of Aarj, A*2 • • • fnay

be neglected. The last equation is then linear with respect to the corrections

A^i, Ajcj . • . which it is desired to find.

For brevity put

F{xi, X2, Xi . . .)^ q-i, a known quantity,

9F _ 3F_ 5F __
5^ — ''"

9x, — ''" dx, — «3, •

.

.

Then the conditional equations will be of the type

ai£^Xi + a^^Xi -\- ajA^g -|- . . . -f- ^1 = o.

* The middle ground between these extremes has been little explored ; indeed, most practical

applications fall at one or the other of the extremes.
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There will be as many equations of this type as there are independent relations

which the quantities x^ -{- A^i, x^ -\- A^vg, . . . must satisfy. Suppose there are A

such relations, and let the differential coefficients 3^/3^i, QJ^/Qx^, ... for the sec-

ond relation be denoted by ii, 4, h, • • • ', io^ the third relation by Ci, c^, Cg, . . .
,

etc. Then all of the conditional equations may be written thus :

a^iiXi -\- «2A«2 + aa^Xi+ . . . + ?i = o.

*i -\-l>2 -\-h + • • + ?2 = o, (a)

Ci + ^2 + ^3 -j- • • • + ?8 = o,

. . .
}

the number of these equations being k.

Call the weights of the observed quantities Xx, x^, . . . p^, p2, . . . . Then, sub-

ject to the conditions {a) we must have (in accordance with (5))

u =pl\x,y +A(A^27 + . . . = [p{^xY\ {b)

a minimum.

Equations (a) and (b) contain the solution of all problems falling under the

present case. Obviously, the number of conditions (a) must be less than the

number of observed quantities x, or less than the number of Aa;'s in {b) ; in other

words, if m denote the number of observed quantities, m > k, ior \i m ^ k the

minimum equation (b) has no meaning.

The question presented by (a) and (b) is one of elimination only. Two methods,

the one direct and the other indirect, are available. Thus, by the direct method

one finds from (a) as many Aa:'s as there are equations (a), or k such values, and

substitutes them in (b). The remaining {m — k) values of ^x in (b) may then be

treated as independent and the differential coefficients of u with respect to each

of them placed equal to zero. Thus all of the corrections Ax become known.

By the indirect process, one multiplies the first of equations {a) by a factor Qi,

the second by Q2, the third by Qs, . . . and subtracts the differential (with respect

to the Ax's) of the sum of these products from half the differential of {b). The
result of these operations is

iidu= {/lAxi _ (ai(2i -f ^i(22 + ^iG + • •)} '^^^i

+ {Pi^2 -(<hQi + hQ2-\-<:iQz+ .. .)} 'i^i

+ • ••

+ {/mAx„, - (a„(2i+ b^Q^ ^c„Q^-\-.. .)} li^x„

Now we may choose the factors Q^, Q^, . . . Q^ in such a way as to make k of the

coefficients of the differentials in this equation disappear ; and after thus elimi-

nating k of these differentials we are at liberty to place the coefficients of the

remaining (m — k) differentials equal to zero. Thus all conditions are satisfied

by making

aiQi + hQ2+ CxQs + . . .— pAxi = o,

<h + ^3 + ^2 + . . . — /2^*2 ^ O.

+ ^m + ^m + . . . — /™Aa;„
if)

= 0:

and the values of the corrections will be given by these equations when the fac-

tors Qi, Q2, . . . are known. To find the latter it suffices to substitute the values
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of A«, ^2, • • from (c) in (a), whereby there will result k equations containing

the Qi, Qi . . . Qt alone as unknowns. The result of this substitution is

[y]a+[f]a+[f]G.+...+..=o.
'ai'
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This equation includes all cases. Its analogy with (a) should be noted, since

the step from (a) to (i) is clear when the correct form of (a) is known. Mistakes

in the applicajion of (d) are most likely to arise from a lack of knowledge of the

independently observed quantities x, y, z, . . , or from a lack of knowledge of the

true form of {a). Hence,* in deriving probable errors of functions of observed

quantities attention should be given first to the construction of the expression for

the actual error (a).

A few examples may serve to illustrate the use of (a) and {Ji).

(i.) Suppose

V=f{x, y,z,..)=zaix-y)-\-b{y-\-z)-\-c(z—i).
Then

AF=ae^-\-(d — d)e„ + {b + c)e„

(2.) Suppose

Then
5V
9x
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For brevity, put

g= i8o° -|- spherical excess, h = -

- + - + -

Then
0.= h {g — X — y — z) =^ he,

t>.x = -i^g - X - y - z),

P

X -\- ^x = —{g — X— y — z)A^x,
P

with similar expressions for the other two angles.

Now by the formula on p. xcv the square of the mean error of an observed

angle of weight unity Is (since there Is but one condition to which A^, Aj, A^ are

subject),

pit^x)"" + q{b.y)^ H- KM'= f-= h^.

Hence, the squares of the mean errors of the observed angles x, y, z, their weights

being/, q, r respectively, are

hc"^ he" he^

respectively.

To get the mean error of a correction, Aa: for example, formula {a) gives

Ar= A(A*) = - 1(^, + ^, + O,

and the corresponding expressions for the actual errors of Aj/ and Az are found

from this by replacing phy q and r respectively. Thus by (p), observing that

the mean errors of x, y, z are given above, there result

Square of mean error of t^x = {hcjpf,

" " " ^y = {hcjqf,

" " " ^— {hejrf.

Likewise, the formula for the actual error of Je + A^ is

A V=^ ^.(x + Aa:) ^ 1 1 — -\e^ — '^e„ — '!^„
h h

- —e,, — —i
P ' P

and the corresponding expressions for the actual errors oi y -\- ^y and z -\- ii.z

are found by interchange of q and r with/. Thus the squares of the mean errors

of the adjusted angles are :
—

for(. + A.), y{"~~p)'

for {y + ^y), ^ (i -
^),

for(.+ A.), 7-'(i-^)-
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In case the weights are equal, or in case p = q = r, h-=\, and there

result, —
Square of mean error of observed angle = J c\

" " " " correction to observed angle z=z ^ c\

" « " " " adjusted angle = S ^,

where c is the error of closure of the triangle ; so that in this case of equal weights

the three mean errors are to one another as \\J2, h ^^^ W^-
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F. R. Helmert. Leipzig : B. G. Teubner, 8vo, 1872.



EXPLANATION OF SOURCE AND USE OF THE
TABLES.

Tables i and 2 are copies of tables issued by the Office of Standard Weights

and Measures of the United States, edition of November, 1891.

Table 3 is derived from standard tables giving such data. The arrangement

is that given in " Des Ingenieurs Taschenbuch, herausgegeben von dem Verein
' Hiitte '"* (nth edition, 1877). The numbers have been compared with those

given in the latter work, and also with those in Barlow's " Tables." The loga-

rithms have been checked by comparison with Vega's 7-place tables.

Table 4 is abridged from a similar table in the Taschenbuch just referred to.

Tables 5 and 6 are copies of standard forms for such table. They have

been checked by comparison with standard higher-place tables. The mode of

using these tables will be evident from the following examples :
—

(i.) To find the logarithm of any number, as 0.06944, we look in Table 5
in the column headed N for the first two significant figures of the number, which

are in this case 69. In the same horizontal line with 69 we now look for the

number in the column headed with the next figure of the given number, which is

in the present case 4. We thus find .8414 for the mantissa of the logarithm of

the number 694. To get the increase due to the additional figure 4, we look in

the same horizontal line under Prop. Parts in the column headed 4 and find the

number 2, which is the amount in units of the fourth place to be added to the

part of the mantissa previously found. Thus the mantissa of log (0.06944) is

.8416. The characteristic for the logarithm in question is —2 ^8— 10. Hence
log (0.06944) =8.8416— 10.

(2.) To find the number corresponding to any logarithm, as 8.8416— 10, we
look in Table 6 in the column headed L for the first two figures of the mantissa,

which are in this case 84. In the same horizontal line with 84 we now look for

the number in the column headed by the next figure of the mantissa, which is in

this case 1. We thus find 6394 for the number corresponding to the mantissa

8410. To get the increase due to the additional figure 6, we look in the same

horizontal line under Prop. Parts in the column headed 6 and find 10, which is

the amount in units of the fourth place to be added to the number previously

found. Thus the significant figures of the number are 6944, and since the char-

acteristic of the logarithm is 8— io^= —2, the required number is 0.06944.

* Berlin ; Verlag von Ernst & Korn. This work is an invaluable one to the engineer, archi-

tect, geographer, etc.



C EXPLANATION OF SOURCE AND USE OF TABLES.

Tables 7 and 8 are taken from " Smithsonian Meteorological Tables " (the

first volume of this series). Their mode of use will be apparent from the follow-

ing example: Required the sine and tangent for 28° 17'.

sine 28° 10', Table 7 0.4720. Tabular difiEerence^ 26.

Proportional part for 7' (7 X 2.6) • . 18.

sine 28° 17' 0.4738.

tangent 28° 10', Table 8 O.S3S4. Difference for i'= 3.8.

Increase for 7' (7 X 3.8) 27.

tangent 28° 17' 0.5381.

Table 9 is a copy of a similar table published in "Professional Papers, Corps

Engineers," U. S. A., No. 12. It has been checked by comparison with other

tables in general use. This table is useful in computing latitudes and departures

in traverse surveys wherein the bearings of the lines are observed to the nearest

quarter of a degree, and in other work where multiples of sines and cosines are

required. Thus, if L denote the length and B the bearing from the meridian of

any line, the latitude and departure of the line are given by

ZcosB and Zsin^

respectively ; the " latitude " being the distance approximately between the paral-

lels of latitude at the ends of the line, and the " departure " being the distance

approximately between the meridians at the ends of the line. As an example, let

it be required to compute the latitude and departure for Z= 4837, in any unit,

and -ff= 36° 15'. The computation runs thus :
—

Latitude. Departure.

For 4000 3225.77 2365.23

800 645.16 473-05

30 24.19 17.74

7 5-63 4-14

4837 Zcos^= 39oo.77 Zsin^^ 2860.16

Tables 10 and 11 give the logarithms of the principal radii of curvature of the

earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and care-

fully checked by differences. They depend on the elements of Clarke's spheroid

of 1866. The use of these tables is sufficiently explained on p. xlv-xlix.

Table 12 gives logarithms of radii of curvature of the earth's spheroid in sec-

tions inclined to the meridian sections. It is abridged to 5 places from a 6-place

table published in the " Report of the U. S. Coast and Geodetic Survey for

1876." Its use is explained on pp. Ixi-lxiv.

Tables 13 and 14 give logarithms of factors needed to compute the spheroidal

excess of triangles on the earth's spheroid. No. 13 is constructed for the Eng-

lish foot as unit, and No. 14 for the metre. These tables were computed by Mr.
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Charles H. Kummell. Their use is explained on p. Iviii. The following example

will illustrate their use :—

Latitude of vertex A of triangle 48° 08'

" B " 47 52

C "
47 04

Mean latitude 47 41

Angle C= 51° 22'
5s" log sin C 9.89283 — 10

log a (feet) 5.64401

log l> (feet) 5.58681

log factor, Table 13, for 47° 41' 0.37176

Spheroidal excess = 3i."29o, log i.49541

Tables 15 and 16 give logarithms of factors for computing differences of lati-

tude, longitude, and azimuth in secondary triangulation whose lines are 12 miles

(20 kilometres) or less in length. These tables were computed by Mr. Charles

H. Kummell. Table 15 gives factors for the English foot as unit, and Table 16

for the metre as unit. The use of these tables is illustrated by a numerical exam-

ple given on pp. Ix and Ixi. For lines not exceeding the length mentioned, the

tables will give differences of latitude and longitude to the nearest hundredth of

a second of arc, using 5-place logarithms of the lengths of the lines.

Table 17 gives lengths of terrestrial arcs of meridians corresponding to lati-

tude intervals of 10", 20", . . . 60", and 10', 20', . . . 60', or lengths corresponding

tb arcs less than 1°. The unit of length iS the English foot. The table was

computed by Mr. B. C. Washington, Jr.

The length corresponding to any latitude interval is the distance along the

meridian between parallels whose latitudes are less and greater respectively than

the given latitude by half the interval. Thus, for example, the length corre-

sponding to the interval 30' and latitude 37° (182047.3 feet) is the distance along

the meridian from latitude 36° 45' to latitude 37° 15'.

By interpolation, we may get from this table the meridional distance corre-

sponding to any interval. The following example illustrates this use : Required

the distance between latitude 41° 28' i7."8 and latitude 41° 39' 53."4. The

difference of these latitudes is 11' 35."6, and their mean is 41° 34' o5."6. The

computation runs thus :
—
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given, it will be more convenient to use formulas (2) on p. xlvi. Thus, in this

example, —
log.

A<^ = 695."6 2.8423596

<f>
= 41° 34' os.''6, p„ (Table 10) 7.3196820

cons't 4-6855749

Length ::= 70407.10 feet 4.8476165
i

Table 18 gives lengths of terrestrial arcs of parallels corresponding to longi-

tude intervals of 10", 20", . . . 60", and 10', 20', . . . 60', or lengths corresponding

to arcs less than 1°. The unit is the English foot. This table was computed by

Mr. B. C. Washington, Jr.

The method of using this table is similar to that applicable to Table 17

explained above. For the computation of long arcs it will in general be less

laborious to use the formulas (i) on p. xlix than to resort to interpolation from

Table 18.

Tables 19-24 give the rectangular co-ordinates for the projection of maps, in

accordance with the polyconic system explained on pp. liii-lvi, for the following

scales respectively :
—

unit = English inch.

Table
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lo', 20', 30'. The curved line joining the extremities of these perpendiculars is

the parallel required. It may be drawn by means of a flexible ruler. The other

parallels are constructed in the same manner. They are all concave towards the

north or south according as the map shows a portion of the northern or southern

hemisphere. The meridians are drawn in a similar manner through the points

{e.g., P, Q, M, R, S, T, U'vci Fig. 4) having the same longitude relative to the

middle meridian. All meridians are concave towards the middle meridian.

A test of the graphical work which should always be applied is the approxima-

tion to equality of corresponding diagonals in the various quadrilaterals formed.

Thus in Fig. 4, TX should be equal to WY, CN io CN', EVX.0EW, etc.*
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Table 31 gives the mean astronomical refraction in terms of the apparent alti-

tude of a star or other object outside the earth's atmosphere. It is taken from

Vega's 7-place table of logarithms. Its use will be evident from the following

example :
—

Apparent altitude of star = 34° 17' 12."7

Refraction = 1' 24."3 +%X i."i = i 24-5

True altitude of star =34 iS 48.2

Tables 32 and 33 facilitate the interconversion of arc and time. They are

taken from the " Smithsonian Meteorological Tables" (the first volume of this

series). The followiug examples illustrate their use :
—

(i.) To convert 68° 29' 48."8 into time we have from Table 32—

68° = 4" 32"" 00"

29' = I 56

48" = 3.20

o."8 = .OS

Equivalent in time = 4 33 59.25

(2.) To com ert ^^ 43"" 28.'8 into arc we have from Table 33—

s"
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and {g/f^) or the length of a seconds pendulum, for intervals of 5" of geograph-

ical latitude. It was computed by the editor, and is based on the formula for g
given by Professor William Harkness in his memoir " On the Solar Parallax and

its Related Constants." *

Table 41 gives the linear expansions of the principal metals. It was compiled

by the editor from various sources. The values given for the expansion per

degree Centigrade have been rounded (with one exception) to the nearest unit in

the millionths place, or to the nearest micron, since different specimens of the

same metal vary more or less in the ten-millionths place.

Table 42 gives the fractional changes in numbers corresponding to changes in

the 4th, 5th, . . . 7th place of their logarithms. These fractions are often con-

venient in showing the approximate error in a number due to a given error in

its logarithm, or the converse. Thus, for example, referring to the remark in a

foot-note under explanation of Tables 36 and 37 above, the error in the loga-

rithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place

of decimals ; the Table 42 shows, then, that the metric equivalents in Tables

36 and 37 are erroneous by about i/ioo 000th part.

* Washington, Government Printing Office, 1891,
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VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE
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935
936
937
938

939

940
941
942

943
944

945
946
947
948

949

950
951

952

953
954

955
956
957
958

959

960
961
962

963
964 .

965
966
967
968

969

970
971
972

973
974

975
976
977
978
979

980
981
982

983
984

985
986
987
9S8
989

1.06952

1.06838

1.06724
1.06610

1.06496

1.06383
1.06270

1.06
1 57

1.0604s
1.05932

1.05820

1.05708

I-OS597

1.05485

1-05374

1.05263

1.05152

1.05042

1.04932
1.04822

1.047 1

2

1.04603

1.04493
1.04384
1.04275

1.041 67
1.04058

1.03950
1.03842

1-03734

1.03627

1.03520
I -0341

3

1.03306

1.03199

1.03093
1.02987
1.0288

1

1.02775
1.02669

1.02564

1.02459

1.02354
1.02249
1.02145

1.02041

1.01937
1.01833

1.01729
1.01626

1-01523
1.01420

1.01317
1.01215

I.0I1I2

874225
876096
877969
879844
88172I

883600

887364
889249
891136

893025
894916
896809
898704
900601

902500
904401
906304
908209
910116

912025

913936
915849
917764
919681

921600
923521
925444
927369
929296

931225
933156
935089
937024
938961

940900
942841

944784
946729
948676

950625
952576
954529
956484
958441

960400
962361

964324
966289
968256

970225
972196
974169
976144
978121

817400375
820025856
822656953
825293672
827936019

830584000
833237621
835896888
838561807
841232384

843908625
846590536
849278123
851971392
854670349

857375000
860085351
86280140S
865523177
868250664

870983875
873722816
876467493
879217912
881974079

884736000
887503681
890277128

893056347
895841344

898632125
901428696
904231063
907039232
909B53209

91 2673000
915498611
918330048
92I167317

924010424

926859375
929714176
932574833
935441352
938313739

941192000
94407614I

946966168
949862087
952763904

955671625
958585256
961 504803
964430272
967361669

\jn

30.5778
30-5941
30.6105
30.6268

30.6431

30.6594
30-6757
30.6920

30.7083
30.7246

30-7409

30-7571

30-7734
30.7896
30.8058

30.8221

30.8383

30.8545
30.8707

30.8869

30.9031

30.9192

30-9354
30.9516

30.9677

30-9839
31.0000
31.0161

31.0322

31.0483

31.0644
31.0805
31.0966
31.1127

31.1288

31.1448
31.1609

31.1769
31.1929
31.2090

31.2250
31.2410

31.2570
31.2730
31.2890

31-3050
31.3209

31-3369

3'-35^8
31,3688

31-3847
31.4006

31.4166

31-4325

31.4484

V«

9-7785
9.7819

9-7854
9.7889

9.7924

9-7959
9-7993
9.8028

9.8063

9.8097

9.8132

9.8167
9.8201

g.8236
9.8270

9.8305

9-8339
9-8374
9.8408

9.8443

9.8477
9.8511

9.8546
9.8580
9.8614

9.8683

9-8717

9.8751

9,8785

9.8819

9.8854
9.8888

g.8922

9.8956

9.8990
9.9024

9,9058
9.9092
9.9126

9.9160

9.9194
9.9227
9.9261

9.9295

9.9329

9-9363

9.9396
9.9430

9.9464

9.9497

9-9531

9.9565
9.9598

9.9632

log. «

2.97081

2.97128

2.97174
2.97220

2.97267

2-97313

2-97359
2.97405

2.97451

2.97497

2.97543
2.97589

2.97635
2.97681

2.97727

2.97772
2.97818

2.97864

2.97909

2-97955

2.98000

2.98046
2.98091

2.98137
2.98182

2.98227
2.98272

2.98318
Z.98363

2.98408

2.98453
2.98498

2.98543
2.(

"

2.<

2.98677
2.98722

2.98767
2,98811

2.98856

2.98900

2.98945
2.98989
2.99034
2.99078

2.99123

2.99167
2.9921

1

2.99255
2.99300

2.99344
2.99388

2.99432
2.99476
2.99520

SwiTHSOMiAN Tables.
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CIRCUMFERENCE AND AREA OF CIRCLE
DIAMETER d.

IN

Table 4
TERMS OF

ltd v d ijtd^

10

II

12

13

IS

16

17

19
20
21

22

23
24

26

27

28

29
3°

31

32

33

34

36

37
38

39

31.416

34.558

37-699

40.841

43.982
47.124

50.265

53-407

56.549

59.690
62.832

65-973

69.115

72.257

75-398

78.540
81.681

84.823

87.965
91.106

94.248

97-389
100.53
103.67

106.81

109.96
113.10

116.24

119.38
122.52

78.5398

95-033:

113.097

132.732

153-938
176.715

201.062

226.980

254.469

2S3.529

314-159
346.361

380.133

415.476
452-389

490.874

530.929

572-555

615.752
660.520
706.858

754.768
804.248

855.299

907.920
962.113
1017.88

1075.21

1134.11

1194.59

40
41

42

43
44
45

46
47
48

49
50
51

52

53
54

56

57

58

59
60

61

62

63

64
65
66

67
68
69

125.66
128.81

131-95

135.09
138.23

141-37

144.51

147.65
150.80

153.94
157.08
160.22

163.36
166.50

169.65

172.79

175-93
179.07

182.21

188.50

191.64

194.78

197.92

201.06

204.20

207.35

210.49

213.63

216.77

1256.64

1320.25

1385.44

1452.20

1520.53

1590.43

1661.90

1734-94
1809.56

1885.74

1963.50
2042.82

2123.72
2206.18

2290.22

2375-83
2463.01

2551.76

2642.08

2733-97
2827.43

2922.47

3019.07

3"7.25

3216.99

3318.31
3421.19

3525-65
3631.68

3739-28

70
71

72

73
74
75

76

77
78

80
81

82

^3
84

85
86
87

90

91

92.
93

94
95

97
98

99

219.91

223.05
226.19

229.34
232.48

235.62

238.76
241.90

245.04

248.19

251-33

254-47

257.61

260.75

263.89

267.04
270.18

273-32

276.46
279.60
282.74

285.88

289.03

292.17

295-31

298-45

301-59

304-73
307-88
311.02

3848.45

3959.19
4071.50

4185.39
4300.84
4417.86

4536.46
4656.63

4778.36

4901.67

5026.55

5153.00

5281.02

5410.61

5541.77

5674.50
5808.80

5944.68

6082.12

6221.14

6361.73

6503.88
6647.61

6792.91

6939.78
70S8.22

7238.23

7389.81

7542.96
7697-69
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LOGARITHMS OF NUMBERS.
Table 5.
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ANTILOCARITHAAS.
Table 6.
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Table 8.
NATURAL TANGENTS AND COTANGENTS.

Natural Tangents.

Angle.
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Yable 10.

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p„
FEET.

[Derivation ot table explained on p. xlv.]

IN ENGLISH

Lat



LOGARITHMS OP MERIDIAN RADIUS OF CURVATURE p„
FEET.

tDerivation of table explained on p. xlv.]
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Table 10.

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm
FEET.

[Derivation of table explained on p, xlv.]

IN ENGLISH

Lat.
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LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm IN ENGLISH

FEET.
[Derivation of table explained on p. xlv,]
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Lat.



^LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE p„, IN ENGLISH
FEET.

[Derivation of table explained on p. xlv.]

Lat.



Table 1 1

.

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION
p„ IN ENGLISH FEET.

[Derivation of table explained on p. xlv.]

Lat.
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LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION
p„ IN ENGLISH FEET.

[Derivation of table explained on p. xlv.]

Lat.
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Lat.
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[Derivation of table explained on p. xlv.]

Lat.



Table 1 1
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[Derivation of table explained on p. xlv.j
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l^ABLE 12.

LOGARITHMS OF RADIUS OF CURVATURE Pa (IN METRES) OF SECTION
OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a.

[Formula for pa given on p. xlv.]



Table 1 2.

LOGARITHMS OF RADIUS OF CURVATURE p^ (IN METRES) OF SECTION
OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a.



Table 13.

LOGARITHMS OF FACTORS t^FOR COMPUTING SPHEROIDAL
EXCESS OF TRIANGLES.

UNIT=THE ENGLISH FOOT.

[Derivation and use ol table explained on p. Iviii.]



Table 14.

LOGARITHMS OF FACTORS _e^
p„p; FOR COMPUTING SPHEROIDAL

EXCESS OF TRIANGLES.
UNIT=THE METRE.

[Derivation and use of table explained on p. Iviii.]



Table IS.

'-2f:^5'T11?.^.2f.i'*°"''°'*S POf* COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION.

UNIT=THE ENGLISH FOOT.
[Derivation and lue o{ table explained on p. U.]
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Table 15i
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION.

UNIT= THE ENGLISH FOOT.
[Derivation and use of table explained on p. Ix,]
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Table 15.
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.

UNIT = THE ENGLISH FOOT.
[Derivation and use of table explained on p. be.]
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Table 15.
LOCA>»rTHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION.

UNIT = THE ENGLISH FOOT.
[Derivation and use of table explained on p. Ix.]
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Table t6.
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION.

UNIT=THE METRE.
[Derivation and use o£ table explained on p. Ix.]
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Table 16.
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION.

UNIT= THE METRE.
[Derivation and use of table explained on p. Ix.]
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Table 1 6.
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.

UNIT=THE METRE.
[Derivation and use of table explained on p. Ix.]
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Table 1 6.

LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION.

UNIT = THE METRE.
[Derivation and use of table explained on p. Ix.]

«



Table 1 7.

LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.
[Derivation of table explained on p. xlvi.]
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LENGTHS OF TERRESTRtAL ARCS OF MERIDIAN.

[Derivation of table explained on p. xlvi.]
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LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.
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Table 18.

LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.
[Derivation of table explained ou p. xlix.]

Longitude



Table 18.

LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.
[Derivation of table explained on p. xlix.]



Table i8.

LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.
[Derivation of table explained on p. xlix.]

Longitude



Table 1 9.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE teAttt-

[Derivation of table explained on pp. liii— Ivi.]
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Table 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iiiUi -

[Derivation of table explained on pp. liii— Ivi.j
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Table 1 9.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE tt^ts-

[Derivation of table explained on pp. liil-lvi.]

20"00

IS

3°
45

21 00

15

3°
45

15

3°
45

23 00

15

30

45

24 00

15

30
45

25 00

IS

30
45

2600

IS

30
45

27 00

15

30

45

28 00

15

30

45

2900

15
30

45

.2 ""o^
? " S S

Inches,

4-358
8.717

13-075

17-433

^359
8.718
i3-°76

17-435

4-359
8.719
13.078

17-437

4.360
8.720

13.080

17-439

4.360
8.721

13.081

17.442

CO-ORDINATES OF DEVELOPED PARALLEL FOR—

15' longitude.

4.361

8.722

13-083

17-444

4.362

8.723

13.085

17.446

4.362

8.724

13-087

17-449

4-363
8.726
13.088

17.451

4-363
8.727

13.091

3000 17.454

Inches.

4.120
4.I14

4.107

4.100

4.094

4.087
4.080

4-073

4.066

4.058

4.051

4.044

4.036

4.029
4.021

4.014

4.006

3-998

3-990
3.982

3-974

3.966

3-958

3-950

3-942

3-933

3-925
3.916

3.908

3-899

3-881

3-873

3.863

3-854

3-845

3-836

3.827

3-817

3.808

3-799

Inches.

.003

.003

.003

.003

•003

.003

-003

.003

.003

.003

.003

.003

.003

.003

.003

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

so' longitude.

Inches.

8.240
8.227

8.214
8.200

8.187

8-173

8.159
8-145

8.131

8.117

8.102

8.088

8.073

8.058

8.043
8.028

8.012

7-997
7.981

7.965

7-949

7-933
7.916
7.900

7-883

7.866

7-849

7-833

7-8i6

7-798
7.780

7-763

7-745

7-727

7.709
7.691

7-673

7.654

7-635
7-616

7.598

Inches.

.012

.012

.013

•013

•013

.013

.013

.013

013

.013

.014

.014

.014

.014

.014

.014

.014

.014

.014

.015

.015

.015

.015

.015

.015

.015

.015

.015

.015

.016

.016

.016

.016

.016

.016

.016

.016

.016

.016

.016

.017

45' longitude.

Inches.

12.360

12.340
12.321

12.301

12.280

12.260

12.239
12.218

12.197

12.175

12.154
12.132

12.109

12.087

12.064

12.041

12.018

"•995
11.971

11.948

11.923

11.899

11.874

11.850

11.825

n.800
11.774

11.749

11.723

11.697

11.671

11.644

11.618

11.591

11.563

11.536

11.509

11.481

"•453
11.425

11.396

Inches.

.028

.028

.023

.029

.029

.029

.029

.030

•030

.030

•030

.031

.031

.031

.031

-032

.032

.032

.032

033

033

-033

-033

•034

-034

-034

-034

•035

•035

•03s
•035
.036

-036

.036

.036

036

.036

•037

•037

•037

037

x" longitude.

Inches.

16.480

16.454
16.428

16.401

16.374

16.346
16.318

16.291

16.262

16.234
16.205

16.176

16.146

16.116

16.086

16.055

16.024

15-993
1 5.962

15-930

15.898

15.865

15-832

1 5.800

15.767

15-733
15.699

15-665

15.631

15-596
15.561

15.526

15.490

15-454
15.418

15.382

15-345

15-308
I 5.270

15-233

15-195

Inches,

.049

.050

.050

.051

.051

.052

-052

•053

053

054
-054

•055

-055

.055

.056

-056

•057

-057

.058

.058

-059

-059

•059
.060

.060

.061

.061

.061

.062

.062

.063

-063

.064

.064

.064

.065

.065

.065

.066

.066

.066
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Table 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Wtinr-

[Derivation of table explained on pp. liii-lvi.]
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Table 1 9.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 7i;ijW>

[Derivation of table explained on p. liii-lvi.j

•S3
3«

4o°oo'

IS

30

45

41 00

IS

3°

4S

42 00

IS

30

45

4300

15

30

45

4400

15

30

4S

45 00

15
30

45

46 00

IS

30

45

4700

15

30

45

48 00

15

30

45

4900

IS

30

45

50 00

sag
.S m-a^

Inches,

4-371

8743
13-114

17.486

4-372

8.744
13-117

17.489

^373
8.746

13.119

17.492

4-374
8.747

13-121

17-495

.4-375

8.749
13.124

17.498

4-375
8.751

13-126

17-501

4-376
8.752
13-128

17-504

4-377

8.754
'3-131

17.508

4-378

8-755
13-133

17-511

4-378

8-757

13-13S

17.514

CO-ORDINATES OF DEVELOPED PARALLEL FOR—

15' longitude.

Inches.

3-362

3-35°

3-337
3-325

3-312

3-300

3-287

3-27S

3.262

3-249
3-230

3-223

3.210

3-197
3-184

3-170

3-158

3-144
3-131

3-1 18

3-104

3-091

3-077

3-063

3-050

3-036
3.022

3.008

2.994

2.980

2.966

2-952

2.938

2.924

2.909

2-895

2.881

2.866

2.852

2.837

2.823

so' longitude.

Inches.

.005

.005

.005

.005

.005

.005

•005

.005

.005

.005

-005

-005

-005

.005

•005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

005

.005

.005

.005

.005

.005

.005

.005

.005

.005

Inches,

6.724

6.699

6.650

6.625

6.600

6-575

6.549

6.524

6.498

6.472

6.447

6.421

6.394
6.368

6.342

6-316

6.289
6.262

6.235

6.209

6.i8i

6.154
6.127

6.100

6.072

6.044
6.017

5-989

5.961

5-933
5.904

5.876

5-848

5.819

5-790

5.762

5-733
5.704

5-675

5.646

Inches.

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

.019

45' longitude.

Inches.

10.086

10.049
10.012

9-975

9-937

9.900
9.862

9.824

9.786

9-747

9-709

9.670

9.631

9.592

9-552

9-513

9-473

9-433

9-393

9-353

9-313

9.272

9-231

9.190

9.150

9.108

9.067

9-025

8.983

§?*'
8.899

8.857

8.814

8.771

8.728
8.686

8.643

8.599

8-555
8.512

8.468

Inches.

.042

.042

•043

•043

043

•043

-043

043

-043

043
-043

•043

•043

•043

-043

-043

•043

•043

•043

•043

-043

-043

•043

•043

•043

-043

-043

•043

•043

•043

•043

-043

•043

-043

-043

•043

043

•043

-043
.042

.042

1° longitude.

Inches.

3-448

3-399

3-349
3-300

3-250

3-200

3-149

3-098

3.048

2.996

2-945

2-893

2.842

2.789

2.736
2.684

2.631

2.578

2.524

2.471

2-417

2-363

2.308

2.254

2.200

2.144

2.089

2.033

1-978

i.§6s
1.809

1-752

1.69^
1.638

1-581

1.524

1.465

1.407

1-349

11.291

Inches.

•075

.075

.076

.076

.076

.076

.076

.076

.076

.076

.076

.076

.076

.076

.076

.076

.077

.077

.077

•077

•077

•077

.077

.077

.077

•077

,077

.077

.076

.076

.076

.076

.076

.076

.076

,076

.076

.076

.076

.076

.076
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CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on p. liii-lvi.}

Table 19.

scale ts-^utts-



Table 1 9.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jrniW-

[Derivation of table explained on pp. liii-lvi.]

6o°oo'

15

30
45

61 00

IS

30
45

62 00

15

30

45

6300

IS

30

45

64 00

15

3°
45

6500

IS
30

45

6600

IS

30

45

67 00

15

30

45

6800

IS
30

45

69 00

IS

30
45

70 00

.S "i-oii
as B-g
N B U =

4.386

8-773
i3-'59

17.546

4-387

8.774
13.161

17.548

4.388

8.776

13-163

17-551

4-388

8.777

13.165

17-554

4-389
8.778

13.167

17-556

4-390

8.779
13.169

17-559

CO-ORDINATES OF DEVELOPED PARALLEL FOR—

15' longitude.

4-390
8.780

13-171

17.561

4-391
8.782

13.172

17-563

4-391

8.783

13-174

17-565

4-392
8.784
13.176

17-568

Ittches.

2.197
2.180

2.164

2.147

2.130

2.II4

2.097
2.080

2.063

2.046

2.029
2.012

1-995

1.978
1.961

1.944

1.926

1.909

1.892

1.875

1.857

1.840

1.823

1.805

1.770

1-753

1-735

1.717

1.700
1.682

1.664

1.647

1.629
i.6n
I -593

1-575

I-5S7

1.540

1.522

1.504

Inches.

.004

.004

•P04
.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.004

.003

.003

.003

.003

-003

.003

.003

.003

.003

•003

.003

.003

.003

.003

so' longitude.

Inches-

A-3<H
4.361

4-327

4.294

4.261

4.227

4.194
4.160

4.126

4.092

4.058

4.024

3-990

3-956
3.922

3-887

3-853

3.819

3-784

3-749

3-715

3.680

3-645
3.610

3-575

3-540

3-505

3-470

3-435

3.400

3-364

3-329

3-293

3-258

3.222

3.186

3-1 51

3-115

3-079

3-043

3-007

Inches*

.017

.017

.016

.016

.016

.016

.016

.016

.016

.016

.016

.016

.015

.015

.015

.015

.015

.015

.015

.015

.015

-015

.014

.014

.014

.014

.014

.014

.014

.014

.014

013

.013

.013

.013

.013

.013

.013

013
.012

.012

45' longitude.

Inches.

6.591

6.541

6.491

6.441

6.391

6.340
6.290

6.240

6.189

6.138
6.088

6.036

5-985

5-934
5.883

5-831

5.780

5.676

5.624

5-572

5-520

5.468

5-415

5-363

5-310

5.258

5.205

5-152

5.099
5.046

4-993

4.940

4.886

4-833
4.780

4.726

4.672
4.618

4-564

4.510

Inches.

037
037
037
•037

037

,036

036
,036

,036

,036

•035

035

°35

•035

034
•034

•034

•034

034
033

033

•033

033
032

032

032
,032

031

031

.031

.031

,030

,030

,030

,029

,029

,029

.029

.028

,028

.028

1° longitude.

Inches.

8.788

8.722

8-655
8.588

8.521

8.454
8.387
8.320

8.252

8.184
8.117

8.048

7.980

7.912

7.844

7-775

7.706

7-637

7.568

7-499

7-430

7.360

7.290
7.220

7-151

7.080

7.010

6.940

6.870

6.799
6.728

6.658

6.586

6.515

6.444

6-373

6.301

6.230

6.158
6.086

6.014

Inches.

.067

.066

.066

.066

.065

•065

.064

.064

.064

.063

•063

•063

.062

.062

.061

.061

.060

.060

.060

.059

•059

.059

.058

.058

.057

.057

.056

.056

•055

-055

.054

•054

-053

-053

.052

.052

.051

.051

.051.

.050

.049
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Table 20.

CO-ORDINATES FOR PROJECTrON OF MAPS. SCALE ittW-
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Table 20.

CO-OROINATES FOR PROJECTION OF MAPS. SCALE nrAnnr-

[Derivation of table explained on pp. liii— Ivi.]

!!a8

u s > sg jS 0) p.

ABSCISSAS OF DEVELOPED PARALLEL.

5'

longitude.

lo'

longitude.

IS

longitude.

20'

longitude.

25'

longitude.

30'

longitude.

ORDINATES OF
DEVELOPED
PARALLEL.

8°00'

lO
20

3°
40
so

900
10
20

30
40
SO

10 00
10
20

30
40
SO

11 00
10

20

30
40
SO

12 00
10
20

30
40
SO

1300
10
20

30
40
SO

1400
10
20

30
40
so

IS 00
10

20

30
40
SO

1600

5.805
H.610
17.416
23.221

29.026

5.806

11.611

17.417

23.222

29.028

5.806
11.612

17.417

23.223

29.029

5.806
11.612

17.419

23.225

29.031

5.807

11-613

17.420

23.226

29.033

5.807
H.614
17.421

23.228

29-°3S

5.808

11-615

17.422

23.230

29.038

5.808

ii.6i6

17.424
23.232

29.040

Inches.

2.894
2.892

2.891

2.890
2.888

2.887

2.886

2.885

2.883

2.882

2.88i

2.879

2.878

2.876

2.875
2.S73

2.872

2.870

2.869

2.867

2.865

2.864
2.862

2.860

2.858

2.857

2-8SS
2.853

2.851

2.849

2.847

2.846

2.844

2.842

2.840

2.838

2.836

2.834

2.831

2.829

2.827

2.825

2.823
2.821

2.8x8

2.816

2.814

2.8l2

2.809

Inches.

S-787
5.784
5.782

S-779

S-777

S-77S

5.772

5.769

S-767
5.764
5.761

S-7S8

S-7SS

S-7S2

S-749
5.746

S-743
5.740

S-737
5-734

5-730

5.727

5.724

5.720

5-717

5-713

5-709

5.706

5.702

5-698

5-695

5.691

5.687

5.683

5.679

S-675

5.671

5.667

5.663

5.658

5.654

5.650

5.646

5.641

5-637

S-^32
5.628

5.623

5.619

Inches.

8.680

8.677

8.673
8.669
8.666

8.662

8.658

8.654
8.650

8.646
8.642

8.637

8.633
8.628

8.624

8.619
8.614
8.610

8.606
8.601

8.596

8.590

^•585
8.580

8.S7S
8.570

8.564

8-559

^553
8.548

8.542

8.536

8.530
8.524

8.519

8-513

8.507

8.500

8.494
8.488

8.481

8.475

8.469
8.462

8.455
8.448

8.441

8-435

8.428

Inches.

569
564

559
554
549

544
539
533
528
522

516

5"
504
498
492
,486

,480

474
468
.461

454
447
,440

434
,426

,419

,412

404
397

390
382

374
366
358
350

342

334
,326

317
308
300

292
282

274
264

255
,246

11-237

Inches,

14.468

14.461

14-455
14.448

14.442

14.436

14.430

14.424
14.416
I4410
14.402

14.396

14.388

14.380

14.366

14-358

14-350

14.342

14-334
14.326

14.318

14-309
14.300

14.292
14.282

14-274
14.264

14.256

14.246

14-237
14.228

14.218

14.208

14.198

14.188

14.178
14.168

14-157

14.146

14.136

14.125

I4.II4

14.103

14.092
14.080

14.069

14.058

14.046

Inches.

7-361

7-353
7-346

7-338

7-331

7-324

7-317

7.308

7.300

7.291

7-283

7.275

7.266

7.257

7-248

7-239
7.229
7.220

7.211

7.201

7.191

7.181

7-171

7.161

7-150

7-139
7.128

7-117

7.107

7.095

7.084

7-073
7.061

7.049
7.038

7.026

7.014
7.001

6.988

6.975
6.963

6.950

6-937

6.924
6.910

6.897

6.883

6.870

16.856

Inches.

0.000

.001

-003

.005

.007

.010

0.000

.001

.003

.006

.009

.013

0.000

.002

.004

.007

.Oil

.016

14"

s



Table 20. ,

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iTTTnnr-

[Derivation oJ table explained on pp. liil-lvi.]

SG
3°-

i6°oo'

10

20

3°
40
SO

17 00
10
20

3°
40
50

18 00
10
20

30
40
50

1900
10

20

3°
40
50

20 00
10

20

30
40
5°

21 00
10

20

30
40
50

22 00
10

20

30
40
50

2300
10

20

30
40
5°

24 00

_ C OJ

Inches.

5.809
U.617
17.426

23-234

29.043

5.809
H.618
17.427

23.236

29.046

5.810

11.619

17.429

23239
29.049

5.810
11.621

17431
23.242

29.052

5.8 1

1

11.622

17433
23.244

29.055

5.812

n.623
17435
23.247

29.058

5.812

11.625

17437
23.250
29.062

11.626

17439
23.252
29.066

s'

longitude.

ABSCISSAS OF DEVELOPED PARALLEL.

Indus.

2.809

2.807

2.804
2.802

2.800

2.797

2.795

2.792

2.790

2.787

2.785

2.782

2.780

2.777

2-774

2.772

2.769

2.766

2.764

2.761

2.758

2-75S
2.752

2.750

2.747

2-743

2.741

2.738

2-735

2.732

2.729

2.726

2.723
2.720

2.717

2.714

2.710

2.707

2.704

2.701

2.697

2.694

2.691

2.688

2.684
2.681

2.677

2.674

2.671

10'

longitude.

Inches.

5.619

5.614

5.609

5.604

5-599

5-595

5-590

5-585

5-580

5-575

5-570

5-564

5-559

5-554

5-549

5-543

5-538

S-533

5-527

5-522

5-516

5.510

5-505

5-499

5-493
5-487

5.482

5-476

5-470

5.464

5-458

5.452

5-445

5-439

5-433

5.427

5.421

5.414

5-408

5.401

5-395
5-388

5-382

5-362

5-355
5-348

5-341

15

longitude.

Inches.

8.428

8.421

8.414
8.406

8-399
8.392

8.385

8.377

8.369
8.362

8-354

8.347

8-339
8-331

8-323

8.315

8.307

8.299

8.291

8.282

8.274
8.266

8.257

8.249

8.240

8.231

8.222

8.213

8.204

8.196

8.187

8.177
8.168

8.159
8.150

8.141

8.131

8.122

8.112

8.102

8.092

8.083

8.073
8.063

8.053
8.042

8.032
8.022

longitude.

Inches.

1 1.237
11.228

II.218
11.208

II.199

II. 189

1 1.180
1 1. 170
II. 159
II.I49

II. 139
II.129

II.119
II. 108

11.097

11.087

11.076

n.065

11.054

11.043
11.032
II.02I

11.009

10.998

10.987

10.975

10.963

10.951

10.939
10.928

10.916

10.903
10.891

10.878

J0.866
10.854

10.842

10.829

io.8t6
10.802

10.790

10.777

10.764

10.750

10.737

10.723
10.710

10.696

8.012 10.683

25'

longitude.

Inches.

14.046

14.034
14.022

14.010

13-998
13.986

13-974
13.962

13-949

13-936

13-924

13.91

1

13.898

13-885

13.872

13-859

13-845
13-832

13.818

13.804

13-790

13.776
13.762

13-748

J 3-734
13-719

13-704
13.689

13-674
13.660

13-645
13.629
13.614

13-598

13-583
13.568

13-552

13-536
13.520

13-503

13-487

13-471

13455
13-438
13.421

13.404

13-387

13-371

13-354

30'

longitude.

Inches.

16.856
16.841

16.827

16.813

16.798

16.784

16.769

16.754

16-739
16.724

16.709

16.693

16.678
16.662

16.646

16.630

16.614

16.598

16.582

16.565
16.548

16.531

16.514

16.497

16.480

i6..i62

16.445
16.427

16.409

16.391

16373

16.336
16.318

16.300
16.281

16.262

16.243
16.223

16.204

16.184

16.165

16.145

16.125

16.105

16.085

16.064

16.045

16.024

ORDINATES OF
DEVELOPED
PARALLEL.

a g
•QS

1-1
•"

16°

Inches.

0.00

1

.002

.005

.009

.014

.020

0.001

.002

.006

.010

.016

.022

.003

.006

.Oil

.017

.025

0.00

1

.003

.007

.012

.018

.027

24"

0.001

.003

.007

.013

.020

.028

17°

InchtSi

0.00

1

.002

.005

.010

.015

.021

19°

.003

.000

.010

.016

.024

0.001

•003

.006

.oil

.018

.026

23°

O.OOI

.003

.007

.012

.019

.028
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CO-ORDINATES FOR PROJECTION OF MAPS.
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CO-ORDINATES FOR PROJECTION OF MAPS.
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Table 20.
,

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE irtVinr'

[Derivation of table explained on pp. liu-lvi.]

48°oo'

10
20

3°
40
SO

4900
10

20

3°
40
5°

50 00
10

20

30
40
50

51 00
10

20

30
40
50

52 00
10

20

3°
40
5°

53°°
10

20

30
40
SO

54 00
10

20

30
40
50

55 00
10
20

30
40
50

5600

°as

is Saf
C c 0) S

ABSCISSAS OF DEVELOPED PARALLEL.

Inches,

5-837
11.674

17.511

23-348
29.185

H.676
17.514

23-352
29.190

5-839
11.678

17-517

23-356
29.194

5.840
11.680

17.520

23.360
29.200

5-841
11.682

17-523

23-364
29.204

S.842
11.684

17.526

23.368
29.210

5-843
11.686

17.529

23-372
29.214

5-844
11.688

17-532

23-376
29.220

longitude,

Inchts.

1.959
.1.952

1.946

1.940

1-933

1.927

1.921

1.914

1.908

1.90

1

1.894
1.888

1.882

1.875

1.869

1.862

1.856

1.849

1.^2
1.836

1.829

1.823

1.816

1.809

1.803

1.796

1.789
1.782

1.776

1.769

1.762

1-755

1.748

1.742

1-735
1.728

1.721

1.714

1.707

1.700

1.694

1.687

1.680

1-673
1.666

1.659
1.652

1-645

1.638

longitude.

15'

longitude

Inches.

3-917

3-905

3.892

3-879
3.867

3-854

3.841

3.828

3-815

3-803

3-790

3-777

3-764

3-750

3-737
3-724

3.698

3-685

3.672

3-658

3-645
3-632
3.618

3.605

3-592

3-578

3-565

3-55'

3-538

3-524
3-5"
3-497

3-483

3-470

3-456

3-442

3-429

3-415
3.401

3-387

3-373

3-359

3-345
3-331

3-317

3-303
3.289

3-275

Indus.

5-876

5-f57
5.838

5-819

5.800

5-781

5-762

5-743

5-723

5-704

5.684

5.665

5.646
5.626

5.606

5-587

5-567

5-547

5-528

S-59Z
5.488

5.468

5.448

5.428

5.408

5.388

5-367

5-347

S-327
5-307

5.287

5.266

5.246

5-225

5.205

5.184

5.164

5-143
5.122

5.101

5.080

5.060

5-039
5.018

4-997

4.976

4-955

4-934

4-913

20'

longitude.

Inches.

7-835
7.810

7.784

7-759

7-733
7.708

7.682

7-657

7-631

7.605

7-579

7-553

7-527

7-501

7-475

7-449
7.422

7-396

7-370

7-343
7-317

7.290

7.264

7-237

7.210

7.184

7.156

7.130

7-103

7-076

7.049
7.022

6.994
6.967

6.940
6.912

6.885

6.857

6.830
6.802

6.774
6.746

6.719
6.691

6.663

6.635
6.607

6.579

6.551

25'

longitude.

Inches.

9-794
9.762

9-730

9.699
9.667

9-635

9.603

9-571

9-539
9-507

9-474

9-442

9.409

9-376

9-344
9-31

1

9.278

9-245

9.212

9.179
9.146

9-"3
9.080

9.046

9.013

8.980

8.946
8.912

8.878

8.844

8.8 II

8-777

8.742
8.708

8.674
8.640

8.606

8.572

8-537
8.502

8.468

8-433

8.398

8.328

8.294
8.258

8.224

8.188

30'

longitude.

Inches.

1.752
I.714

1.677

1.638

1.600

1.562

1-523

1.485

1.446
1.408

1-369

1-330

I.291

1.251
1.212
I-I73

1-134

1.094

1-055
I.0I5

0-975
0.936

0.895

0.855

0.816

0.775

0.734
0.694

0.654
0.613

0-573
0-532

0.491

0.450

0.409
0.368

0.327
0.286

0.244
0.202

0.1 61

0.120

0.078

0.036

9-994
9-952
9.910
9.868

9.826

ORDINATES OF
DEVELOPED
PARALLEL.
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[Derivation of table explained on pp. liii-lvi.]
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CO-ORDINATES FOR PROJECTION OF MAPS. SCALE nsWir-

[Derivation of table explained on pp. liii-lvi.]
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Table 21.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE WriET-

[Derivation of table explained on pp. liii-lvi.]
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Table 21.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TT^WiT-

[Derivaiion of table explained on pp. Uii-lvi.]



Table 21-

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE xidrw
[Derivation of table explained on pp. liii-lvi.]
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Table 21

.

CO- ORDINATES FOR PROJECTrON OF MAPS. SCALE yWrinr-

[Derivation of table explained on pp. liii-lvi.]
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CO-ORDINATES FOR PROJECTION OF MAPS. SCALE n^m -
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CO-ORDINATES FOR PROJECTION OF MAPS.
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.

CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on pp. liii-lvi.]

SCALE issVao-



Table 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ttW
[Derivation of table explained on pp. liii-lvi.]



Table 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 77}^.

[Derivation of table explained on pp. liii-lvi.]

-3 g u

.2 K-Si!
S „
= S S

ABSCISSAS OF DEVELOPED PARALLEL.

S'

longitude.

10'

longitude.

IS'

longitude. longitude.

25'

longitude.

30'

longitude.

ORDINATES OF
DEVELOPED
PARALLEL.

7°oo'

10
20

30
40
SO

800

10

20

3°
40

so

900

10
20

30
40
so

10

20

30
40
so

10
20

30
40
so

10

20

30
40
so

1300

10

20

30
40
so

14 00

Inches.

68.712

11.452

22.905

34-35»
45.810

57.262

68.715

"4S3
22.906

34-3S9
45.812

57.265

68.718

"•454
22.907

33-361

45.814
57.268

68.722

11.454

22.909

34-263
45-817

57.272

68.726

11.455
22.910

34-365
45.820

S7-27S

68.730

11.456
22.912

34-367
45-823

57.279

68.735

11.457

22.913

34-370
45.827

57.284

68.740

Inches.

5.722

5.720

S-717

S-71S
S-7I3
S-7II

S-709

5.706

S-704

S-701

5.696

S-694

5.691

5.688

5.686

5.683
5.680

S-677

S-674
5-671

5.668

^^^
5.662

5.659

5.656

5.652

5.649

5.646

5.642

S-639

5.636

S-632
5.628

5.625

5.621

5.618

5.614

5.610

5.606

5.602

S-S98

S-S94

Inches.

"-443

"-439
"-43S
11.430
11.426

11.422

11.417

11.412

11.407

11.403

11.398

"-393

11.388

n.382
"•377
"•371
11.366

11.360

"•355

"•349
"343
"•337
"•331
11.324

11.318

11.312

11.305
11.298

11.292

n.285

11.278

II.271
11.264

11.257

11.250

11.242

"•235

11.227

11.220

11.212

11.204
II.196

11.188

Inches,

17.165

17-159
17.152

17.146

17-139
17.132

17.126

17.119
17.111

17.104

17.096

17.089

17.082

17-073
17.065

17-057
17.049
17.040

17.032

17.023

17.014

17.005

16.996

16.987

16.978

16.968

16.958

16.948

16.938
16.928

16.918

16.907
16.896

16.885

16.874
16.864

16.853

16.841

16.829
16.818

16.806

16.794

16.783

Inches.

22.887

22.878

22.869

22.861

22.852

22.843

22.834

22.825

22.815

22.805

22.795
22.786

22.776

22.764

22.754
22.742

22.732
22.720

22.710

22.698

22.685

22.673
22.661

22.649

22.637

22.624
22.610

22.597
22.584

22.570

22.557

22.542
22.528

22.514

22.499
22.485

22.470

22.455

22.439
22.424
22.408

22.392

22.377

Inches.

28.609

28.598

28.587

28.576

28.565

28.554

28.543

28.531

28.519

28.507

28.494
28.482

28.470

28.456
28.442
28.428

28.415
28.401

28.387

28.372

28.357

28.342

28.327

28.311

28.296

28.280

28.263

28.246

28.230

28.213

28.196

28.178
28.160

28.142

28.124
28.106

28.088

28.069

28.049

28.030
28.010

27.991

27.971

Inches.

34^330

34^317

34-304
34.291

34-278

34-265

34-252

34-237
34-222

34.208

34-193
34-178

34-163

34-147
34-130
34-"4
34-097
34.081

34.064

34.046
34.028

34.010

33-992

33-973

33-955

33-935
33-915
33-895
33-875

33-855

33-835

33-814

33-792

33-770

33-749
33-727

33-706

33-682

33-659

33-635
33-612

33-589

33-565

3-s

Inches.

0.000

.002

.005

.008

.013

.018

.003

.006

.010

.016

.023

O.OOI

-003

.007

.013

.020

.028

13°

.004

.008

.015

.023

-033

Inches.

0.001

.002

.005

.009

.014

.021

.003

.006

.Oil

.018

.026

O.OOI

.003

.008

.014

.021

.031

14°

O.OOI

.004

.009

.016

.025

-035

Smithsomian Tables.



Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ssW

[Derivation of table explained on pp. liii-lvi.]

II

i4°oo'

10

20

30
40
5°

15 00

10

20

30
40
5°

BO

.2 »-aJJ

Inches.

68.740

11.458

22.915

34-373
45.830
57.2S8

68.746

11.459
22.917

34-376

45-834

57-293

ABSCISSAS OF DKVELOPED PARALLEL.

S'

longitude.

1600



CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on pp. liii-lvi.]

Table 22.
SCALE ^jJsT-
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Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS.

[Derivation of table explained on pp. liii-lvi.]

SCALE ?jjinr-



Table 22i
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^^hs-

[Derivation of table explained on pp. liii-lvi.]



Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS.

[Derivation of table explained on pp. liii-lvi.]

SCALE vsWs'

o

-si



Table 22,
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 7;W

[Derivation of table explained on pp. liii-Ivi.]

•s



Table 22. .

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^stTn-

[Derivation of table explained on pp. liii-lvi>]



Table 22.
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE zvhs-

[Derivation of table explained on pp. liii-lvi.]

.10.

63°oo'

10
20

30
40
SO

6400

10
20

30
40
50

6500

10
20

30
40
50

66 00

10
20

3°
40
SO

67 00

10

20

30
40
SO

6800

10

20

30
40
50

69 00

10

20

30
40
SO

7000

a S S

s

3 2'S:S

S 5
cd > S

Inches.

69-2S3

11.544

23.087

34-631

46.175

57.718

69.262

"•S4S
23.091

34-635
46.182

S7727

69.272

11.547

23.094

34.641
46.188

S7-73S

69.282

11.548

23.097

34.646
46.194

57-742

69.291

11.550

23.100

34.650
46.200

57-750

69.300

n.552
23.103

34-654
46.206

S7-7S8

69.309

"-S53
23.106

34-659
46.212

57-764

69-317

ABSCISSAS OF DEVELOPED PARALLEL.

S

longitude.

Inches.

2.624

2.609

2.594

2.579
2.564

2.549

2-S34

2.519

2.504
2.488

2-473

2.458

2-443

2.428

2.412

2-397
2.382

2.366

2-3SI

2-336
2.320

2.305
2.290

2-274

2.259

2.243
2.228

2.212

2.197
2.181

2.166

2.150

2.134
2.1 19
2.103
2.088

2.072

2.056

2.040

2.025

2.009

1-993

1.977

10

longitude.

Inches.

5-248

5.218

5.188

5.158

5.128

5.098

5.068

S-037
5.007

4-977

4-947
4.916

4.886

4.855
4.825

4-794
4.764

4-733

4.702

4.672

4.641

4.610

4-579
4.548

4.518

4.487

4-45S
4.424

4-393
4.362

4-331

4.300
4.269

4-237
4.206

4-175

4.144

4.112

4.081

4.049
4.018

3.986

3-955

15'

longitude.

Inches.

7.872

7.827

7.782

7-737
7.692

7.647

7.602

7-556
7.511

7-465
7.420

7-374

7-329

7-283

7-237

7.191

7-145
7.100

7.054

7.007

6.961

6.915
6.869

6.823

6.776

6.730
6.683

6.637

6.590

6-543

6.497

6.450

6.403

6.356

6.309
6.263

6.216

6.169
6.121

6.074
6.027

5.980

S-932

20'

longitude.

Inches.

10.496

10.436

10.376
10.316
10.256

10.196

10.136

10.075
10.014

9-954
9-893
9-832

9-772

9-035

8-973
8.911

8.849

8.787

8.724

8.662

8.600

8.538

8.475
8.412

8.350

8.288

8.225
8.162

8.099
8.036

7-973

7.910

25'

longitude.

Inches.

13.120

13-045
12.970

12.895
12.820

12.745

12.670

12.594
12.518

12.442

12.367

12.291

12.215

9-7"



Table 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE siftZ-

[Derivation o£ table explained on p, liii-lvi.]

a J!

is

70°oo

10

20

30
40
5°

71 00

10

20

30
40
SO

72 00

10
20

30
40
50

7300

10

20

30
40
50

7400

10

20

30
40
5°

7500

10

20

30
40
50

7600

10

20

30
40
5°

7700

Bo;

Itickes.

69-317

"•554
23.109

34-663
46.217

57.772

69.326

11.556
23.1 1

1

34.667
46.222

57-778

69-334

11-557
23.114

34.670
46.227

57-784

69.341

11.558
23.116

34-674
46.232

57.790

69.348

"-559
23.118

34-677
46.236

57-796

69-355

11.560

23.120

34.681

46.241

57.801

69.361

1 1.561

23.122

34-683
46.244
57-806

69-367

ABSCISSAS OF DEVELOPED PARALLEL.

5'

longitude.

Inches.

1.977

.962

.946

-930

.914

.898

.882

.866

.850

.835

.819

.803

.787

-771

-755

-739

-723

.707

.691

.674

.658

.642

.626

.610

-594

.578

.562

545
.529

-513

•497

.480

.464

.448

•432

-415

-399

.366

•35°

•334
•317

.301

Smithsonian Tables.

10

longitude.

Inches,

3-955

3-923
3.892

3.860
3.828

3-796

3-765

3-733
3.701

3.669

3-637

3.605

3^574

3542
3^5°9

3-477

3-445

3-413

3-381

3-349
3-3 '7
3.284

3-252
3.220

3.188

3-' 55
3-123

3.091

3.058

3.026

2-993

2.961

2.928

2.896

2.863

2.831

2.798

2.765

2-733
2.700

2.667

2.634

2.602

15'

longitude.

Iftches.

5-932

5.885

5^837

5-790

5.742

5-695

5^647

5.600

5-552

5^504

5.456
5.408

5.360

S-312
5.264

5.216

5.168

5.120

5.072

5.024

4-975
4.927

4.878

4.830

4.782

4-6^5

4.636

4.587

4-539

4.490

4.441

4-392

4^344
4.295
4.246

4.197

4.148

4.099
4.050
4.001

3952

3903

20'

longitude.

Inches.

7.910

7.846

7-783
7-720

7.656

7^593

7^530

7.466

7.402

7^338

7^275
7.211

7^147

7.083

7.019

6.955
6.891

6.826

6.762

6.698

6.634

6.569

6.504

6.440

6.376

6-311

6.246
6.181

6.116

6.052

5-987

5.922

5.856

5-792

5-726

5.661

5-596

5-530

5-465
5.400

5-334
5.269

5.204

25'

longitude.

9.888

9.808

9.729
9.650

9-571

9.491

9.412

9-333
9-253

9-173

9.094
9.014

8.934

8.854

8.774
8.694
8.614

8-533

8-453

8-373
8.292
8.211

8.131

8.050

7.970

7.889
7.808

7.727

7-645

7-565

7.484

7.402

7-321

7.240

7.158

7-077

6.995

6.913
6.832

6.750
6.668

6.586

6.505

30'

longitude.

Inches.

11.865

1 1.770

11.675

11.579
11.485

11.389

11.294

11.199
II. 103
11.008

10.912

10.816

10.721

10.625

10.528

10.432

10.336
10.240

10.144

10.047

9.950
9-853

9-757
9.660

9-563

9.466

9-369
9-272

9-175
9-077

8.980

8.882

8.785
8.687

8.590
8.492

8-394

8.296

8.198

8.099
8.002

7^903

7.805

ORDINATES OF
DEVELOPED
PARALLEL.

'Ebu



CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on p. liii^lvi.]

Table 22.

SCALE isTihTi-

•s

3^



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Wirw
[Derivation of table explained on pp. liii-lvi.]



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE aooiaa -

[Derivation of table explained on pp. liii-lvi.]

"S
.



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^tuVtHT'

[Derivation of table explained on pp. liii-lvi.]



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TsWsTnr-

[Derivation of table explained on pp. liii-lvi.]



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^mrW-
[Derivation of table explained on pp. liii-lvi.]

•s

1^



Table 23.

\t\J-



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on pp. liii-lvi,]

SCALE ^T^TS'

11

lo

20

30
40
5°

4900
10

20

30
40
5°

50 00
10
20

30
40
50

51 00
10

20

30
40
5°

5200
10

20

30
40
5°

S3 00
10

20

30
40
50

5400
10

20

30
40
50

10

20

30
40
50

5600

w S > rt

92.7

278.0

370.6

463-3

CO-ORDINATES OF DEVELOPED PARALLEL FOR—

y longitude.

92.7

185.4

278.0

370.7

4634

92.7

185.4

278.1

370.8

4634

92.7

185.4

278.1

370.8

463.6

92.7

1854
278.2

370-9
463.6

62.2

62.0

61.8

61.6

61.4
61.2

61.0

60.8

60.6

60.4

60.2

60.0

59.8

59-5

59-3

S9.I

58.9

58.7

58-5

58-3

58.1

57-9
57-6

57-4

57-2

57-0

56.8

56.6

56-4

56.2

56.0

92.7



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE WffiyTy

[Derivation of table explained on pp. liii-lvi,]



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE its^tsts-

[Derivation o£ table explained on pp. liii.-lviii.]

S3



Table 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^TiiW-

[Derivation of table explained on pp. liii-lvi.]

11



Table 24.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE sTshT!-

[Derivation o£ table explained on pp. liii-lvi.]

0"00'

10

20

30
40
SO

1 00
10

20

30
40
50

2 00
10

20

30
40
SO

300
10

20

30
40
SO

400
10

20

30
40
SO

500
10

20

30
40
SO

600
10

20

30
40
SO

7 00
10

20

30
40
SO

800

230.4

460.7

691.0

921.4

1151.8

230.4

460.7

691.0

921.4

1151.8

230.4

460.7

691.0

921.4

1151.8

230.4

460.7

691.

1

921.4
1151.8

230.4

460.7

691.

1

921.4
:i5i.8

230.4

460.7

691.

1

921.5
1151.8

230.4
460.8

691.

1

921.5

1151.9

230.4
460.8

691.1

92.1.5

1151.9

ABSCISSAS OF DEVELOPED PARALLEL.

5'

longitude.

16.0

16.0

16.0

16.0

16.0

15.9

IS-9

15.9

IS-9

15.9

IS-9

15.9

IS9
15.9

IS-9

.5.8

,5.8

15.8

15.8

15-8

15.8

1 5-7

iS-7

15-7

iS-7

15.6

15.6

15.6

15.6

s-s
iS-S

S-S
15.4

1 5-4

15-4

15-3

iS-3

15.2

15.2

15-2

1 5.1

15-1

1 5-1

15.0

15.0

14.9

14.9

1 14.8

10

longitude.

231.9

231.9

231.9

231.9

231.9

231.9

231.9

231.9
231.8

231.8

231.8

231.8

231.8

231-8

231.7

231-7

231.7

231.6

231.6

231.6

231.S

231.S
231.4

231-4

229.7

IS'

longitude.

347.9
347.9
347.8

347.8

347.8

347.8

347-8

347.8

347-8

347.7

347-7

347-7

347.7
347-6

347-6

347.S
347-5

347.5

347-4

347-3

347-3
347-2

347-2

347-1

231.4



Table 24.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TirW-

[Derivation of table explained on pp. liii-lvi.]

sasa

ABSCISSAS OF DEVELOPED PARALLEL.

S'

longitude.

10'

longitude. longitude.

20'

longitude.

25'

longitude.

30'

longitude.

ORDINATES OF
DEVELOPED
PARALLEL.

8°00'

10

20

3°
40
SO

goo
lO

20

30
40
SO

10 00
10
20

30
40
SO

11 00
10

20

30
40
so

12 00
10
20

30
40
SO

1300
10

20

30
40
so

1400
10
20

30
40
SO

1500
10

20

30
40
SO

1600

230.4
460.8

691.2

921.6
1152.0

230.4
460.8

691.2

921.6
1 1 52.0

230.4
460.8

691.3

921.7
II 52.1

230.4

460.9

691.3

921.8
1 1 52.2

230.4

460.9
691.2

921.8

1152.2

230.5

460.9
691.4

921.9
1152.4

230.5
461.0

691.5
922.0

1152.4

230.5
461.0

691.5
922.0

1 152.6

14.8

14.8

147
14.7

14.6

14.6

14.5

I4-S

14.4

14.4

14-3

14-3

14.2

14.2

14.1

14.0

14.0

139

13.8

13-8

13.6

13.6

I3-S

'3-4

134
13-3

13.2

13.2

I3-I

13.0

12.9

12.8

12.8

12.7

12.6

I2-S
12.5

12.4

12.3

12.2

I2.I

12.0

1 1.9

1 1.8

1 1.8

II.7

1 1.6

111.5

229.7
229.6

229.5

229.4

229.3
229.2

229.1

229.0

228.9

228.7

228.6

228.5

228.4

228.3
228.2

228.0

227.9
227.8

227.7

227.5
227.4

227.3
227.1

227.0

226.9

226.7

226.6

226.4

226.3

226.2

226.0

225.9

225.7
225.6

225.4
225.2

225.1

224.9

224.7

224.6

224.4
224.2

224.1

223.9
223.7

223.5

223.3

223.2

344-

S

344-4
344-2

344-1

343-9
343-8

343-6

343-4

343-3
343-1

3430
342.8

342.6

342-4

342-3
342-1

341-9

341-7

341-5

341-3

341 -I

340-9

340.7

340-5

340.3
340-1

339-9
339-7

339-4
339-2

339-0
338-8

338-6

338-3
338-1

337-9

337-6

337-4
337-1

336-6

336-4

336-1

335-8

335-6

335-3
335-0

334-7

223-0 334-5

459-4
459-2

459-0
458.8

458.6

458.4

458.2

457-9
457-7

457-5

457-3
457.0

456.8

456.6

456.4
456.1

455-8
455-6

4SS-4
45S-I

454.8

454-6

454-3
454-0

453-8

453-5
453-2

452.9
452.6

452-3

452.0

451-7

451.4
451.

1

450.8

450.5

450.2

449-8

449-5
449-1

448.8

448-S

448.1

447-8

447-4

447.0

446.7

446.3

446.0

574-2

574.0

573-7

573-4

573-2

573-0

572.7

572.4
572-2

571.8

571-6

571-3

571.0

570-8

570.4

570.1

569.8

569.5

569.2

568.8

568.6

568.2

567-6

567-2

566.8

566.1

565.8

565.4

564.6

564.2

563-9

563-S
563-1

562.7

562-3

561.8

561.4

561.0

560.6

560.2

559-7
559-2

558-8

558-4

557-9

557-4

689.0
688.7

688.4
688.1

687.8

687.5

687.2

686.9
686.6
686.2

685.9
685.6

685-3

684.9

684.5
684.1

683.8

683.4

683.0
682.6

682.3
681.8

681.4
681.

1

68D.6
680.2

679.8

679.3
678.9

678-5

678.1

677.6

677.1

676.7

676.2

675-7

675.2

674.8

674.2

673-7

673.2

672.7

672.2

671.6

671.

1

670.6

670.0

669.5

668.9

^2
8°

0.0

0.0

0.1

0.2

03
0.4

0.0

0.1

0.1

0.2

0.4

0-5

12°

0.0

0.1

0.2

0.3

0.4

0.6

14'

5



Table 24.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ^irW-

[Derivation of table explained on pp. liii-lvi.]

r

10

20

3°
40
SO

17 00
10
20

30
40
SO

iS 00
10
20

30
40
SO

ig 00
10

20

30
40
5°

20 00
10

20

30
40
SO

21 00
10

20

.30
•40

'SO

"22-00 '

10

20

30
40
SO

23 00
10

20

30
40
so

2400

.2 »>'d2

230.5
461.1

691.6

922.1

1152.6

ABSCISSAS OF DEVELOPED PARALLEL.

S'

longitude.

230.6

461.1

691.6
922.2

1152.8

230.6

461.1

691.7

922.3
1152.8

230.6

461.2

691.8

922.4
1153.0

230.6

461.2

691.9

922.5

"S3-1

230.6

692.0

922.6

1153.2

230.7

461.4

692.0

922.7

'1 534

230.7

461.4

692.1

922.8

"53-6

111.5

111.4

111.3

111.2

iii.i

III.O

110.9

110.8

H0.7
110.6

110.5

1 10.4

110.3

110.2

IIO.l

II 0.0

109.9

109.8

109.7

109,6

109.5

109.4

109.2

1 09.

1

109.0

108.9
108.8

108.7

108.5

108.4

108.3

108.2

108.1

107.9
107.8

107.7

107.6

107.4

107-3

107.2

107.1

106.9

106.8

106.7

106.5

106.4

106.3

106.1

106.0

longitude.

223.0
222.8

222.6

222.4
222.2

222.0

221.8

221.6

221.4
221.2

221.0

220.8

220.6

220.4
220.2

220.0

219.8

219.6

219.4
2ig.i

218.9

218.7

218.5

218.2

218.0

217.8

217.5

217-3
217.1

216.8

216.6

216.4

216.1

215.9
215.6

215.4

215.1

214.9

214.6

214.4

214.1

213.9

213.6

213-3
213.1

212.8

212.5

212.3

IS'

longitude.

334-S
334-2

333-9
333-6

333-3
333-1

332-8

332-

S

332-2

331-9
331-6

331-3

33'-o

330-6

330-3

330-0

329-7

329-4

329-0

328.7

328.4
328.0

327-7

327-4

327-0

326.7

326.3

326.0

325-6

32S-3

324-9

324-S
324.2

323-8

323-4
323-1

322.7

322.3

321.9
321.6

321.2

320.8

320.4
320.0

319.6

319.2
318.8

318.4

318.0

20'

longitude.

446.0

445.6

445.2
444.8

444.4
444-1

443-7

443-3
442.9

442-5
442.1

441.7

441-3
440.8

440.4
440.0

439-6

439-2

438-7

438-3

437-8

437-4
436-9

436-S

436.0

43S-6
435-1

434-6
434-2

433-7

433-2

432-7

432.2

431-7
431.2

430.8

430-3
429.8

429.2
428.8

428.2

427-7

427.2
426.6

426.1

425.6

425.0

424.5

424.0

25'

longitude.

SS7-4

SS7-0

5S6-5
556.0

SSS-6
SSS-i

554.6

SS4-I

SS3-6
S53-I

552.6

SS2-1

SSi-6
551.0

550.6

550.0

S49-4

S49-0

S48.4

S47-8

546.8

546.1

S4S-6

S4S-0

S44-4

S43-8
543-3

542.7

542.1

S4I-S

540.9

540-3

539-6

539-0

S3»-4

537-8

537-2

536.6

536.0

535-3

534-6

534-0

533-3
532-6

532.0

53 '-3

530.6

530-0

30'

longitude.

668.9
668.3

667.8

667.2

666.7

666.1

664.9

663.7

663.1

662.5

661.9

661.3

660.7

660.0

659-3
658.7

658.1

656.8

656.1

6SS-4
654.7

654.1

till
652.0

651.2

650-5

649.8

649.1

648.4

647.6

646.9
646.1

645-4
644.6

643-9
643.1

642.4
641.6

640.8

640.0

639.2

638.4
637-6
636.8

636.0

ORDINATES OF
DEVELOPED
PARALLEL.

.2| 16°

0.0

0.1

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.4

0.6

0.9

0.0

0.1

0.2

0.4

0.7

1.0

5



CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on pp. liii-lvi.]
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CO-ORDINATES FOR PROJECTION OF MAPS. SCALE sD^i)-

[Derivation of table explained on pp. liii-lvi.]
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CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on pp. liii-lvi.]

Table 24>

SCALE iihi -

3^

40"oo'

10
20

30
40
50

41 00
10

20

30
40
SO

42 00
10
20

30
40
so

4300
10

20

30
40
so

4400
10

20

30
40
so

4500
10

20

30
40
so

46 00
10

20

30
40
so

4700
10

20

30
40
SO

4800

Sag

231-3
462.6

694.0

1156.6

231.4

462.7

694.1

925.4
1156.8

231.4
462.8

694.2

925.6
1
1 57.0

231.4

462.9

694-3
925.8

1157.2

231-S
463.0

694.4

925.9
1157.4

23I-S

463.1

694.6
926.1

1
1 57.6

231.6

463.1

694.7

926.3
1
1 57.8

231.6

463.2

694.8

926.4
1
1
58.0

ABSCISSAS OF DEVELOPED PARALLEL.

longitude.

89.0

88.7

88.5

88.3
88.1

87.9

87.6

87.4

87.2

87.0
86.8

86.5

86.3
86.1

85.8

85.6

85-4
85.2

84.9

84.7

84,-S
84.2

84.0

83.8

83.6

83-3
83.1

82.8

82.6

82.4

82.1

81.9
81.6

81.4
81.2

80.9

80.7

80.4
80.2

80.0

79-7

79-S

79.2

79.0

78.7

78.5

78.2

78.0

77-7

10'

longitude.

177.9

I77-S

177.0
176.6

176.2

17S-7

I7S-3

174-8

174-4

173-9

173-S
173-0

172.6

172.1

171.7

171.2

170.8

170.3

169.9

169.4

169.0

168.5

168.0

167.6

167.1

166.6

166.2

165.7

165.2

164.7

164.3
i63.§

163.3
162.8

162.3

161.9

161.4

160.9

160.4

159.9

IS9-4

158.9

158.5

158.0

IS7-S
157.0

156-5

156.0

iSS-S

IS'

longitude.

266.9
266.2

265.6

264.9
264.2

263.6

262.9

262.3
261.6

260.9
260.2

259.6

258.9
258.2

257.6

256.9
256.2

25S-5

254.8

254.1

253-4
252.8

252.0

251-3

250.6

249.9
249.2
248.5

247.8

247.1

246.4

245.7

245.0

244.2

243-5
242.8

242.1

241.4
240.6

239-9
239.2

238.4

237-7

236.9
236.2

235-5

234-7

234.0

233-2

20'

longitude.

355-8

355-0
354-1

353-2

352-3

351-4

350.6

348.8

347-9
347-0
346-1

345-2

344-3

343-4
342-

5

341.6

340-7

339-8
338-8

337-9
337-0
336-0

335-1

334-2

333-2

332-3

331-4

330-4
329-5

328.5

327.6
326.6

325-6

324-7

323-7

322.8

321.8

320.8

319.8

318-9

317-9

316.9

315-9

314-9
314.0

313-0
312.0

31 1.0

25'

longitude.

444.8

443-7
442.6

441.5

440.4

439-3

438-2

437-1

436.0

434-8

433-8
432-6

431-S
430-4
429.2
428.1

427.0

425.8

424.7
423.6
422.4
421.2

420.0

418.9

417-8
416.6

415-4
414.2

413-0
411.8

410.6

409.4
408.2

407.0
405.8

404.6

4034
402.2

401.0

399-8
398.6

397-4

396.2

394-9
393-6

392-4
391.2

390.0

388.7

30'

longitude.

S33-8
532-4
531-1

529.8

528-S
527.2

525.8

524-5

523-1

521.8

520.5

519-1

517-8

516.4

515-1

513-7

512-3

511-0

509.6

508.3

506.9

505-5
504-1

502.7

501-3

499-9
498.5

497.0

495-6
494-2

492.8

491-3

489.9
488.5

487.0
485.6

484.1

482.7

481.2

479.8

478-3
476.8

475-4

473-9
472.4

470.9
469.4

467-9

466.4

ORDINATES OF
DEVELOPED
PARALLEL.

40°

tnm.

0.0

0.2

0.4

0.7

I.O

1-5

42"

0.0

0.2

0.4

0.7

1.0

1-5

44"

0.0

0.2

0.4

0-7

I.I

1-5

46°

0.0

0.2

0.4

0-7

I.I

i-S

0.0

0.2

0.4

0.7

1.0

1-5

41°

mjn.

0.0

0.2

0.4

0-7

1.0

1-5

43°

0.0

0.2

0.4

0.7

I.I

1-5

45°

0.0

0.2

0.4

0-7

I.I

1-5

47°

0.0

0.2

0.4

0.7

i.i

1-5

Smithsonian Tables.
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Table 24.

CO-ORDINATES FOR PROJECTION OF MAPS.
[Derivation of table explained on pp. liii-lvi.]

SCALE Tir^T-



Table 24.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE rihu-

[Derivation of table explained on pp. liii-lvi.]

•ss

.2 "-Sii

S c s s

ABSCISSAS OF DEVELOPED PARALLEL.

longitude.

10'

longitude. longitude.

20'

longitude.

25'

longitude.

30'

longitude.

ORDINATES OF
DEVELOPED
PARALLEL.

S6°oo'
10

20

3°
40
5°

5700
10

20

30
40
SO

5800
10
20

30
40
SO

S9 0O
10

20

30
40
SO

6000
10

20

30
40
SO

61 00
10

20

30
40
SO

62 00
10

20

30
40
SO

6300
10

20

30
40
SO

6400

232.0

463-9

695.9

927.9
1159.8

232.0

464.0

696.0

928.0
1 160.0

232.0

464.1

696.1

928.2
II60.2

232.1

464.2

696.2

928.3
1 1 60.4

232.1

464.2

696.4

1 160.6

232.2

464-3

696.4
928.6
II60.8

232.2

464-4
696.6

928.8
II6I.0

232.2

464.4
696.7

928.9
II6I.I

65.0

64.7

64.4
64.2

63.6

63-3
63.0
62.7

62.5
62.2

61.9

6i.6

61.3
61.0

60.7

60.4
60.2

59-9

S9-6

S9-3

S9-0
58.7

58.4

58.1

S7-8

S7-S
57.2

57.0

56.7

56.4

56.1

55.8

SS-S
55.2

S4-9

54.6

S4-3
54-0

S3-7

S3-4

S3-

1

52.8

52.5
52.2

51.6

Si-3

51.0

130.0

129.4

128.9

128.3

127.7

127.2

126.6

126.0

125.5

124.9

124-3

123.8

123.2

122.6

122.0

121.5

120.9

120.3

"9-7
1 19.2

1 18.6

1 18.0

"7-4
1 16.8

101.9

195.0

194-1

193-3

192.4

191.6

190.8

189.9

189.1

188.2

187.4

186.5

185.6

184.8

183.9

183.1

182.2

181.4

180.5

179.6

178.7

177-9

177.0

176.1

I7S-3

116.3



Table 24.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE fnhv-

[Derivation of uble explained on pp. liii-lvi«]

I
.2 "'OJ!
3s

PS
iSSi

ABSCISSAS OF DEVELOPED PARALLEL.

5'

longitude. longitude.

IS'

longitude. longitude.

2S'

longitude.

30'

longitude.

ORDINATES OF
DEVELOPED
PARALLEL.

64°00'

10
20

30
40
SO

6500
10
20

30
40
SO

6600
10
20

30
40
SO

67 00
10

20

30
40
SO

6800
10
20

30
40
SO

6900
10

20

30
40
SO

70 00
10

20

30
40
SO

71 00
10

20

30
40
SO

72 00

232.2

464.5
696.8

929.0
Il6l.2

464.6

696.9

929.1
II6I.4

232-3

464.6

697.0

929-3
II6I.6

232.4

464.7
697.0

929.4
1I6I.8

232.4

464.8

697.1

929.5
1161.9

232.4

464.8

697.2

929.6
1 1 62.0

232-4

464.9

697-3,

929.7
1 162.2

232.5

464.9

697.4

929.8
1162.3

51.0

50.7

50-4
50.1

49.8

49-4

49-1

48.8

48.5

48.2

47-9
47-6

47-3
47-0

46.7

46.4
46.1

45-8

4S-4
45.1

44-8

44-5
44-2

43-9

43-6

43-2

42.9
42.6

42-3

42.0

41.7

41.4

41.0

40.7

40.4

40.1

39-8

39-S

3§i
38.8

38-S
38.2

37-9

37-6

37-2

36.6

36-3

3S-9

101.9

101.3

100.7

1 00.

1

99-S
98.9

98-3

97-7

97.1

96-4

95-8

9S-2

94.6

94-0

93-4
92-7

92.1

91-S

90.9

90-3
89.6

89.0

88.4

87-7

87.1

86.5

85-9
85.2

84.6

84.0

83-4
82.7
82.1

8i.q

80.8

80.2

79-6

78-9

78-3

77-6

77.0

76-4

7S-7
7S-I

74-5

73-8

73-2

72.5

71.9

152.9

152.0

151.1

150.2

149.2

148.3

147.4

146.5

145.6

144.7

143-7
142.8

141.9

141.0

140.0

139-1

138.2

137-2

136-3

"35-4

134-4

133-S
132.6

131.6

130-7

129.8

128.8

127.9

126.9

126.0

125.0

124.1

123.2

122.2

121.2

120.3

"9-3
1 1 8.4

117.4

116.5

115-5

114.6

113.6

112.6

1H.7
110.7

109.7

108.8

107.8

203.9
202.6

201.4
200.2

199.0

197.8

196.6

195-3

194.1

192.9

191.6

190.4

189.2

188.0

186.7

185.5
184.2

183.0

181.8

180.5

179.2

178.0

176.8

175-5

174.2

173-0

171.7

170-5

169.2

168.0

166.7

165.4
164.2

162.9

161.6

160.4

159.1

157.8

156.6

I5S-3

154.0

152.8

151-5

150.2

148.9

147.6

146.3

HS-o

143.8

254.8

253-3
251.8

250.3
248.8

247.2

245.7
244.2

242.6

241.1

239-6
238.0

236.5

235.0

233-4
231.8

230-3
228.8

227.2

225.6

224.0

222.5
221.0

219.4

217.8

216.2

214.6

213.1

211.6

210.0

208.4
206.8

205.2

203.6
202.0

200.5

198.9

197-3

195-7

194-1

192.6

191.0

189.4

187.8

186.2

184.5

182.9

181.3

179-7

305.8

304.0
302.2

300.4

296.6

294.8

293.0
291.2

289-3

,287.5

285-7

283.8

281.9
280.1

278.2

276.4

274-

5

272.6

270.8

268.9
267.0

265.1

263.2

261.4

259-S
257.6

255-7

253-9
251.9

250.1

248.2

246.3

244-4
242.5

240.6

238-7

236.8

234.8

232.9
231.

1

229.1

227.2

225-3

223.4
221.4

219-5

217.6

215.6

64°

mm.
0.0

0.1

0-3

0.5

0.8

1.2

66°

0.0

0.1

0-3

i.i

68°

0.0

0.1

0-3

0-5

0.7

1.1

70°

s



Table 24
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Tjshm-

[Derivation of table explained on pp. liii-lvi.]



Table 25.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10° EXTENT
IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

Middle

Latitude of

Quadrilateral.





Table 26.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT

LATITUDE AND LONGITUDE.



AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1<

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. l-lii,j

Table 26.
EXTENT IN

Middle latitude



Table 27.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-Iii.]

Middle latitude

of quadrilateral



Table 27.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral.

39 00

39 IS

39 30

39 45

40 00
40 IS

40 30
40 4S

41



Table 27.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. l-lii.]

Middle latitude

of quadrilateral.





Table 28.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN

LATITUDE AND LONGITUDE.
[DeiivatioD ol ubla explalntd on pp. l-lii.]

Middle latitude

of quadrilateral.



Table 28.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. l-lii.]

Middle latitude

of quadrilateral.



Table 28.
AREAS OF QUADRtLATERALS OF EARTH'S SURFACE OF 16' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral.

39° 07 3°

39 'S 00

39 22 30

39 30 00

39 37 30
39 45 00

39 52 30
40 00 00

40 07 30
40 15 00
40 22 30
40 30 00

40 37 30
40 45 00
40 52 30
41 00 00

41 07 30
41 15 00
41 22 30
41 30 00

41 37 30
41 45 00
41 52 30
42 00 00

42 07 30
42 15 00
42 22 30
42 30 00

42 37 30
42 45 00
42 52 30
43 00 00

43 07 30
43 IS 00

43 22 30

43 30 00

43 37 30
43 45 00

43 52 30

44 00 00

44 07 30
44 15 00
44 22 30
44 30 00

44 37 30
44 45 00

44 52 30

45 00 00

45 07 30

45 15 00

45 22 30

45 30 00

Area in

square miles

231.67

231.27
230.86

230.45

230.04
229.63
229.22

228.81

228.40

227.99
227.57
227.15

226.73

226.32

225.90

225.48

225.06

224.64
224.21

223.79

223.36
222.93
222.50

222.08

221.65
221.21

220.78

220.35

219.91

219.48
210.04
218.60

218.16

217.73
217.28

216.84

216.40

215.96

215.51
215.06

214.61

214.17

213.72

213.27

212.82

212.37
211.91

211.46

211.00

210.55
210.09

209.63

Middle latitude

of quadrilateral.

45° 37 30

45 45 00

45 52 30
46 00 00

46 07 30
46 15 00
46 22 30
46 30 00

46 37 30
46 45 00
46 52 30
47 00 00

47 07 30

47 15 00

47 22 30
47 30 00

47 37 30

47 45 00

47 52 30
48 00 00

48 07 30
48 15 00
48 22 30
48 30 00

48 37 30
48 45 00
48 52 30
49 00 00

49 07 30

49 15 00

49 22 30
49 30 00

49 37 30

49 45 00

49 52 30
50 00 00

SO 07 30
50 15 00

50 22 30
50 30 00

SO 37 30
50 45 00

50 52 30
51 00 00

S> 07 30
5'



Table 28.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral.



Table 28.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN
LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral.

78°





Table 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN
LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. Hii.]

Middle latitude

of quadrilateral.



Table 29
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT INLATITUDE AND LONGITUDE.

i^^ 1 1« i m
[Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral.



Table 29.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN

LATITUDE AND LONGITUDE.
[Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral



Table 29.
AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN

LATITUDE AND LONGITUDE.
• [Derivation of table explained on pp. 1-lii.]

Middle latitude

of quadrilateral.



Table 30.

DETERMINATION OF HEIGHTS BY THE BAROMETER.
Formula of Babinet.

y f-i B^ B
Bo + B

C(in feet)= 52494 fi + ^o+ ^~^4"]_ English Measures.
L 900 J

r 2 it A- i\~\

C (in metres)= 16000 i + ^^^
— — Metric Measures.

In which 2';= Difference of height of two stations in feet or metres.

^o. 5= Barometric readings at the lower and upper stations respectively, corrected for

all sources of instrumental error.

ta, t^ Air temperatures at the lower and upper stations respectively.

Values of C.

ENGLISH MEASURES. METRIC MEASURES.

H'o+')-

F.

10°

IS

20

30

35

40

45

5°

55

60

65

70

75

80

85

90

95

100

logC.

4.69834

•70339

.70837

•71330

.71818

4.72300

•72777

.73248

•73715

•74177

4^74633

•75085

•75532

•75975

•76413

4.76847

.77276

.77702

.78123

C.

Feet.

49928

50511

51094

51677

52261

52844

53428

5401

1

54595

55178

55761

56344

56927

575"

58094

58677

59260

59844

60427

i('o+').

C.

—10°
— 8— 6
— 4— 2

+2
4
6

10
12

14
16

18

20
22

24
26
28

30
32

36

logC.

1.18639
.t9ooo

•19357
.19712
.20063

4.2041

2

.20758

.21101

.21442

.21780

4.22II5

.22448

•22778
.23106

23431

4-23754
•24075

•24393
.24709
.25022

4^25334
•25643

.25950

.26255

Metres.

'5360
15488
15616

15744
15872

16000
1 61 28

16256
16384
1-6512

16640
16768
16896
17024
17152

17280

17408
17536
17664
17792

17920
18048
18176

18304

Smithsonian Tables.
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o o

10

20

30
40

I o

2 O

10
20

30
40
SO

3 °

4 o

10

20

3°
40
5°

5 °

10
20

30
40
5°

60
10

20

30
40
50

7 o

Table 31.
MEAN REFRACTION.

Refraction.

34 54-1

32 49.2

3° 52-3

29 3-S
27 22.7

25 49-8

24 24.6

23 6-7

21 55.6
20 50.9

't
51-9

18 58.0

18 8.6

17 23.0

1640.7
16 0.9

1523-4
14 47-8

14 14.6

1343-7
13 15.0

12 48.3
12 23.7
12 0.7

" 38-9

II 18.3

10 58.6

10 39.6
10 21.2

10 3-3

946-5

930-9
916.0

848.4
835-6

823.3

811.6
8 0.3

7 49-5

7 39-2

7 29.2

719-7

124.9

116.9

108.8

ioa.8

92-9

85.2

77-9

71.

1

64.7

59.0

53-9

49-4

45.6

42-3

39-8

37-S

35-6

33-2

30.9

28.7

26.7

24.6

23.0

21.8

20.6

19.7

19.0

18.4

17.9

16.8

15.6

14.9

14.

1

'3-5

12.8

12.3

II. 7

1 1.3

10.8

10.3

10.0

9-5

C u

a 3

< "

o '

7 o

10
20

30
40
5°

8 o

10
20

30
40
5°

9 o
10
20

30
40
5°

10
20

30
40
5°

10
20

30
40
50

10

20

30
40
so

13 o

10
20

30
40
50

14 o

Refraction

719-7

710.5

7 1-7

653-3
645-1
637-2

629.6

622.3
615.2
6 8.4

6 1.8

SSS-4

5 49-3

5 43-3

5 37-6

S32-0
526.5
521-3

516.2

5 II. 2

5 6.4

5 1-7

457.2
452-8

448.5

4 44-3
440.2
436-3
432-4
428.7

425.0

421.4
4 18.0

414.6

4 "-3
4 8.1

4 4-9

4 1.8

358-8

3 55-9

3 53-0

350-2

347-4

14 o

20

40

15 o

20

40
16 o

20
40

17 o

20

40
18 O

20

40

19 O

20

40

20

40

20

40

20

40

23 O

20
40

24 O

20

40

25 o

20

40
26 o

20
40

27 o

20

40

28 o

Refraction.

3 47-4

342.1

3 37-0

332-1

327-4
322.9

318-6

314-5
310-5

3 6.6

3 2.9

259-3

255-8

252-5
249-3

246.1

243.1
2 40.2

237-3

2 34-5
231-9

229.3

226.8

224.3

2 21.9

2 19.6

217-4

2 15.2

213.0
2 10.9

8.9

2 3-2

2 1.4

159-6

157-8

I 56.1

I 54-4

I 52.8

I 51.2

149-7

148.2

Refraction.

28 o

20

40

29 o

20

40

30 o
20

40

31 o

20

40

32 O

20

40

33 o
20

40

34 o

20

40

35 o

20

40

36 o

20
40

3Z_
20
40

38 o

39 o

20

40

40 o
20

40

41 o

20
40

42 o

48.2

46.7

45-3

43-8

42.4
41.0

397
38-4

37-1

35-8

34-5

33-3

32.1

30-9
29.8

28.7

27.6

26.5

25-4

24-3

23-3

22-3

21.3

20-3

'9-3

18.3

17-4

^6^5
15.6

14-7

iiS
12.9

12.0

10.3

9-5M
7-9

7-1

Al
5-5

4-7

4.0

132

44

46

i2.

54

I

60

62

63

22.
71

72

73

77
78

79
80

sr
82
86
90

Refraction.

64.0
61.8

59-7

57-7

53-8

51-9
50.2

"4ST
46.7

45-1

43-5

41.9

40.4

38-9

36.1

J±7_
33-3

32.0

30-7

29-4

28.2

26.9

25-7

24.5

23-3
22.2

21.0

18.8

17-7

16.6

15-5

14-5

13-4

12.3

1 1.2

10.2

4.1

0.0

2.0

2.0

1.9

1.9

'.7

1.8

»-7

1.6

1.6

1.6

"•5

1-5

1.4

1.4

1-4

1.4

1.3

«.3

1.3

1.2

1-3

1.2

1.2

I.I

I.I

I.I

1.0

i.o

i.i

i.o

4.0

4-1

Smithsonian Tables.
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Table 32.



FOR CONVERSION OF TrME INTO ARC.
Table 33t

Hours of Time into Are.



Table 34.



Table 35 •

CONVERSION OF SIDEREAL TIME INTO MEAN TIME.



Table 36.
LENGTH OF ONE DECREE OF THE MERIDIAN AT DIFFERENT

LATITUDES.
[Derivation of table explained on pp. xlvi-xlviii.]



Table 37,
LENGTH OF ONE DECREE OF THE PARALLEL AT DIFFERENT

LATITUDES.
[Derivation of table explained on p. xHx.]

Latitude.



Table 38.
INTERCONVERSION OF NAUTICAL AND STATUTE MILES.

I nautical mile* ^6080.27 feet.

Nautical Miles.



Table 40.
ACCELERATION (g) OF GRAVITY ON SURFACE OF EARTH AND

DERIVED FUNCTIONS.
£"^ 9"77989+ 0.05221 sin* ^
1=9.80599— 0.02610 cos 2^ metres.*

r= geographical latitude.

<(>



Table 41

.

LINEAR EXPANSIONS OF PRINCIPAL METALS, IN MICRONS PER
METRE (OR MILLIONTHS PER UNIT LENGTH).

Name of metal.

Aluminum . .

Brass ....
Copper ....
Glass ....
Gold ....
Iron, cast . . .

Iron, wrought .

Lead ....
Platinum . . .

Platinum-iridium ^

SUver ....
Steel, hard . .

Steel, soft . . .

Tin
Zinc

Expansion per
degree C.

20

19
17

9
IS
II

12

28

9
8.7

19
12

II

'9
29

Expansion per
degree F.

10.S
9.4

6.1

6.7

iS-S

4.8

I0.S
6.7

6.1

10.5

16.1

Smithsonian Tables.
1 Of International Prototype Metres.

Table 42.
FRACTIONAL CHANCE IN A NUMBER CORRESPONDING TO A CHANCE

IN ITS LOGARITHM.
Computed from the formula,

AAf _ A log AT

N ~
|U. '

fi = modulus of common logarithms ^ 0.43429448.

For
A log .A''

= I unit in



APPENDIX.

CONSTANTS.

Numerical Constants.



APPENDIX.

CONSTANTS. -Continued.

Astronomical Constants (Hakkhess).

Sidereal year = 365.256 357 8 mean solar days.

Sidereal day = 23* 56»« 4.1100 mean solar time.

Mean solar day == 24^ 3»< 56.'i546 sidereal time.

Mean distance of the earth from the sun — 92 800 000 miles.

Physical Constants.

Velocity of light (Harkness) = 186 337 miles per second = 299 878 km. per second.

Velocity of sound through dry air = 1090 v'l + 0.00367 t° C. feet per second.

Weight of distilled water, free from air, barometer 30 inches :

Weight in grains. Weight in grammes.

Volume. 62° F. 4° C. 62° F. 4° C.

I cubic inch (determination of 1890) 252.286 252.568 16.3479 16.3662

I cubic centimetre (1890) IS-39S3 ^SAT-^S 0.9976 0.9987

I cubic foot (1890) at 62° F. 62.2786 lbs.

A standard atmosphere is the pressure of a vertical column of pure mercury whose
height is 760 mm. and temperature 0° C, under standard gravity at latitude 45°

and at sea level.

I standard atmosphere = 1033 grammes per sq. cm. = 14.7 pounds per sq. inch.

Pressure of mercurial column i inch high = 34.5 grammes per sq. cm. = 0.491

pounds per sq. inch.

Weight of dry air (containing 0.0004 of its weight of carbonic acid) :

I cubic centimetre at temperature 32° F. and pressure 760 mm. and under the

standard value of gravity weighs o.ooi 293 05 gramme.

Density of mercury at 0° C. (compared with water of maximum density under atmos-

pheric pressure) = 13.5956.

Freezing point of mercury =— 38.°5 C. (Regnault, 1862.)

Coefficient of expansion of air (at const, pressure of 76o'«'«) for 1° C. (do.) : 0.003 670.

Coe6Scient of expansion of mercury for Centigrade temperatures (Broch) :

A = Aj, (i — 0.000 i8i 792 t— 0.000000000 175 <^— .000000000035 "6 fi).

Coefficient of linear expansion of brass for 1° C, p = 0.0000174 to 0.0000190.

Coefficient of cubical expansion of glass for 1° C, y = 0.000 021 to 0.000 028.

Ordinary glass (Recknagel) : at 10° C, y = 0.000 0255 ; at 100°, y = 0.000 0276.

Specific heat of dry air compared with an equal weight of water :

at constant pressure, £}> = 0.2374 (from 0° to 100° C, Regnault).
at constant volume, Ji^v — 0.1689.

Ratio of the two specific heats of air (Rontgen) : A}) /jt» = 1.4053.

Thermal conductivity of air (Graetz) : i — 0.000 04S4 (i A- 0.00 1 %t,f, C )
^''"'"'°'

[The quantity of heat that passes in unit time through unit area of a plate of unit thickness, when its

opposite faces differ in temperature by one degree.]

Latent heat of liquefaction of ice (Bunsen) = 80.025 niass degrees, C.

Latent heat of vaporization of water = 606.5— 0.695 '° C.

Absolute zero of temperature (Thomson, Heat, Encyc. Brit.) :— 273.°o C. = 4S9.°4 F.

Mechanical equivalent of heat :
*

I pound-degree, F. (the British thermal unit) = about 778 foot-pounds.

I pound-degree, C. = 1400 foot-pounds.

I calorie or kilogramme-degree, C. = 3087 foot-pounds = 426.8 kilogram-
metres = 4187 joules (for ^= 981 cm.).

Smithsonian Tables.

* Based on Prof. Rowland's determinations, (Proc, A m, Acad. Arts and Set* t88o.)
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APPENDIX.

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS.
English to Metric.

Units of length.

I inch.

I foot.

I yard.

I mile.

Units of area.

I square inch.

I square foot.

I square yard.

I acre.

I square mile.

Units of volume.

I cubic inch.

I cubic foot.

I cubic yard.

Metric equivalents,

2.54000 centimetres.

0.304801 metre.

0.914402
"

1.60935 kilometres.

6.45163
929.034

0.836131
0.404687

2.59000
259.000

16.3872

0.028317

0.764559

Units of capacity

i

I gallon (U. S.) = 231 cubic inches.

I quart (U. S.).

I Imperial gallon (BritisW.

277.463 cubic inches (1890).

I bushel (U. S.) = 2150.42 cubic inches.

I bushel (British).

Units of mass.

I grain.

I pound avoirdupois.

I ounce avoirdupois.

I ounce troy.

1 ton (2240 Ibs.^.

I ton (2000 lbs.).

Units of velocity.

I foot per sec. (0.6818 miles per hr.) = 0.30480 metres per sec. = 1.0973 km. per hr.

I mile per hr. (1.4667 feet per sec.) = 0.44704 metres per sec. = 1.6093 ^'^- Per hr.

64.7990

0-453593
28.3496
31-1035
1.01 605
0.907186

square centimetres.
II (I

square metre,
hectares-

square kilometres,

hectares.

cubic centimetres,

cubic metres or steres.

cubic metres or steres.

3.78544 litres.

0.94636 litres.

4.54683 litres.

35.2393 litres.

36.3477 litres.

milligrammes.
kilogrammes.
grammes.
grammes.
tonnes.

tonnes.

Logarithms.

0.404 835
9.484016— 10

9.961 137 — 10
0.206 650

0.809 669
2.968 032
9.922 274— 10

9.607 120— 10

0.413 300
2.413 300

1.214504
8.452 047— 10

9.883 41 1 — 10

0.578 116

9.976056— 10

0.657 709

1.547027
1.560477

1.811 568
9.656 666— 10

1.452 546
1.492 810
0.006914
9.957 696— 10

Units of force.

I poundal.
Weight of I grain (for^= 981 cm.).

Weight of I pound av. (for^= 981 cm.).

13825.5 dynes.

63.57 dynes.

4.45 X 10' dynes.

4.140682
1.803 237
5-648 335

1.846997
0.688 634

5.624 698

Units of stress— In gravitation measure.

I pound per square inch = 70.307 grammes per sq. centimetre.

I pound per square foot = 4-8824 kUogrammes per sq. metre.

Units of woric— in absolute measure.

I foot-poundal. 421 403 ergs.

— In gravitation measure.

I foot-pound (for^= 981 cm.) = 1356-3 X 10* ergs = 0.138255 kilogram-metres.

Units of activity (rate of doing work).

1 foot-pound per minute (fori-= 981 cm.) = 0.022605 watts.

I horse-power (33 000 foot-pounds per mm.) = 746 wa s = 1.01387 force de cheval.

Units of heat.

I pound-degree, I''.

I pound-degree, C.

= 252 small calories or gramme-degrees, C.

= 1.8 pound-degrees, F.

SmTHSONiAM Tables. 173



APPENDIX.

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS.

Metric to English.



APPENDIX.

DIMENSIONS OF PHYSICAL QUANTITIES.
L = length ; M = mass ; T = time.

Quantity.

Area.

Volume.
Mass.
Density.

Velocity.

Acceleration.

Angle.
Angular Velocity.

Dimensions Quantity,

[L^] Momentum.
[L^] Moment of Inertia.
[M] Force.
[M L""S] Stress (per unit area).

[LT-i] Work or Energy.
[LT~2] Rate of Working {Power). [L^UT^]
[o] Heat. [L2 M T-2]
[1—1] Thermal Conductivity. [L~i M T~i]

Dimensions.

[L M T-i]

[ML2]

IL M T-2]

[L-i M T-^]

[L2 M T-2]

In Electrostatics.

Quantity of Electricity.

Surface Density: quantity per unit area.

Difference of P o t e n t i a 1 : quantity of work required
to move a quantity of electricity

;
(work done) -^ (quan-

tity moved).

Electric Force, or Electro-motive Intensity:
(quantity) -^ (distance^).

Capacity of an accumulator : e -i- £.

Specific Inductive Capacity.

In Magnetics.

Quantity of Magnetism, or Strength of Pole.

Strength or Intensity of Field:
(quantity) -^ (distance^).

Magnetic Force.

Magnetic Moment: (quantity) X (length).

Intensity of Magnetization: magnetic moment per

unit volume.

Magnetic Potential: work done in moving a quantity

of magnetism ; (work done) -i- (quantity moved).

Magnetic Inductive Capacity.

Symbol.

e

a

E
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PAGB

Acceleration, dimensions of 175
of gravity, formula for 171

table of values of 169

Air, cubical expansion, specific heat, thermal

conductivity, and weight of 172

Airy, Sir George, treatise cited xcviii

Albrecht, Dr. Th., treatise cited Ixxx

Algebraic formulas xiii-xv

Alignment curve Ivi

Aluminum, linear expansion of 170

Ampere, dimensions of 175

Angles, equivalents in arcs xviii

sum of, in spheroidal triangle Ivii

Angular velocity, dimensions of 175

Annulus, circular, area of xxx

Antilogarithms, explanation of use of xcix

4-place table of 26, 27

Appendix 171-175

Arcs, equivalents in angles xvii

of meridians and parallels xlvi-1

table of lengths of meridional 78-80

table of lengths of parallel 81-83

table of time equivalents 162

Are xli

Area, of circle xxx

table of values of 23

of surface of earth 1-lii

Areas, of continents Ixv

of oceans Ixv

of plane and curved surfaces xxix-xxxi

of zones and quadrilaterals of the

earth's surface 1-lii

tables of values of 142-159

of regular polygons xxx

Arithmetic means, progression, and series, .xiii

Astronomical constants 172

co-ordinates Ixvu

latitude xliv

time Ixxii

Astronomy Ixvii-lxxxii

references to works on Ixxxii

Atmosphere, mass of earth's Ixvi

standard pressure of 172

vpeight of unit of volume of 172

Average error, definition of Ixxxiv

Azimuth, astronomical and geodetic Ivii

computation of differences of Iviii-lxi

determination of Ixxix

PAGB
Babinet, barometric formula of

, . . 160
Barometer, heights by 160
Binomial series xiv

Brass, linear expansion of 170
Briinnovir, F., treatise cited Ixxxii

Bushel, Winchester xxxv
equivalent in litres 2

Cable length xxxviii

Calorie, value of 172

Capacity, measures of, British xxxviii

Metric xli

Centare xli

Chauvenet, Wm., treatise cited Ixxxii

Circumference, of circle xxviii

table of values of 23

of earth xlix, 171

of ellipse xxix

C. G. S. system of units xlii

Clarke, General A. R., spheroid of xliii

treatise cited , Ixvi

Coefiicient, of cubical expansion of air and
mercury 172

of linear expansion of metals 170

of refraction Ixiii

Compression, of earth xliii

Computation, of differences of latitude, lon-

gitude, and azimuth Iviii

of mean and probable errors xcv

Conductivity, thermal, of air 172

Cone, surface of xxxi

volume of xxxii

Constants, astronomical 172

geodetical 17I

numerical 17I

of earth's spheroid xliv

Continental measures (table of British and

Metric equivalents) 168

Continents, areas of Ixv

average heights of Ixv

Conversion, of arcs into angles and angles

into arcs xvii

of British and Metric units. . .2, 3, 173, 174

Co-ordinates, astronomical Ixvii

for projection of maps liii-Ivi

table of, scale 1/250000 84-91

table of, scale 1/125000 92-101
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Co-ordinates {continued).

table of, scale 1/126720 102-109

table of, scale 1/63360 1 10-121

table of, scale 1/200000 122-131

table of, scale 1/80000 132-141

of generating ellipse of earth's spheroid . . xliv

Copper, linear expansion of 170

Cord (of wood), volume of xxxix

Correction, for astronomical refraction, table

of mean values of 161

to observed angle for eccentric position

of instrument Ixiii

to reduce measured base to sea level. . .Ixiv

Cosines, table of natural 28, 29

use of table explained c

Cotangents, table of natural 30> 3'

use of table explained c

Coulomb, dimensions of 175

Cubature, of volumes xxxii

Cubes, table of 4-22

Cube roots, table of 4-22

Cylinder, surface of xxxi

volume of xxxii

Day, sidereal and solar Ixxii, 172

Degrees, number of, in unit radius xviii

of terrestrial meridian xlvi, 166

of terrestrial parallel xlix, 167

Density, mean, of earth Ixv

mean, of superficial strata of earth Ixv

of mercury 172

Departures (and latitudes), table of 32-47

mode of use of table explained c

Depths, average, of oceans Ixv

Determination, of azimuth Ixxix

of heights, by barometer 160

by trigonometric leveling Ixi

of latitude Ixxvii

of time Ixxiv

Difference, between astronomical and geo-

detic azimuth Ivii

of heights, by barometer 160

by trigonometric leveling Ixi

Differences, of latitude, longitude, and azi-

muth, on earth's spheroid Iviii

table for computation of 70-77

Differential formulas xxi

Dimensions, of earth xliii, 171

of physical quantities 175

Dip, of sea horizon Ixiii

Distance, of sea horizon Ixiii

of sun from earth 172

Doolittle, Prof. C. L., treatise cited Ixxxii

Earth, compression of xliii, 171

Earth (continued).

density of ^ Ixv

dimensions of xliii, 171

ellipticity of xliii, 171

energy (of rotation) of Ixvi

equatorial perimeter of xliii, 171

flattening of xliii, 171

mass of Ixvi

meridian perimeter of xlix, 171

moments of inertia of Ixvi

shape of xliii

surface area of .Hi

volume of Ixv

Eccentricity, of ellipse xliii

of earth's spheroid xliv, 171

El, value of 168

Electric quantities, dimensions of 175

Electro-magnetic quantities, dimensions of . 175

Ellipse, area of xxx

equations to , xliv

length of perimeter of xxix

Ellipsoid, volume of (see Spheroid) xxxiii

Ellipticity, of earth xliii, 171

Energy, dimensions of 175

of rotation of earth Ixvi

Equations, of ellipse xliv

of Prototype Kilogrammes xl

of Prototype metres xl

Error, in ratio of English yard to Metre, .xxxvii

Errors, probable, mean, average. .Ixxxiv, Ixxxviii

table of, for interpolated quantities. .Ixxxvi

theory of Ixxxiii

Everett, J. D., treatise cited xlii

Excess, spherical or spheroidal Iviii

Expansion, cubical, for air and mercury .... 172

linear, of principal metals 170

Farad, dimensions of 175
Fathom, length of xxxviii

Swedish 168

Flattening, of earth xliii, 171

Foot, Austrian ; 168

British xxxvii

French, Rhenish, Spanish, Swedish 168

Force, dimensions of 175

Formulas, algebraic xiii-xv

for differentiation xxi

for integration xxiii

for solution of plane triangles xviii

for solution of spherical triangles xx

trigonometric xv

Freezing point of mercury 172

Functions, trigonometric, of one angle xv

of two angles xv'

special values of xv
values in series xvii
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Gallon, British and wine .- xxxviii

Gauss's formulas for spherical triangles xxi

Geocentric latitude xliv

Geodesy xliii-lxvi

references to works on Ixvi

Geodetic azimuth Ivii

Geodetic differences of latitude, longitude,

and azimuth Iviii

Geodetic line Ivii

Geodetical constants 171

Geographical latitude xliv

Geographical positions, computation of.lviii-lxi

Geoid, definition of xliii

Geometric means, progression xiii

Glass, linear expansion of 170, 172

Gold, linear expansion of 170

Gravity, acceleration of, formula for 171

table of values of 169

Gunter's chain, length of xxxviii

Harkness, Prof. Wm., memoir cited

Ixv, 169, 171, 172

Heat, dimensions of 175

latent, of liquefaction of ice 172

of vaporization of water 172

mechanical equivalent of 172

Hectare xli

Heights, average, of continents Ixv

determination of, by barometer 160

trigonometrically Ixi

Helmert, Dr. F. R., treatise on geodesy

cited Ixvi

treatise on theory of errors cited xcviii

Horizon, dip of sea Ixiii

Imperial pound and yard xxxiv

Integrals, definite xxvi

indefinite . . . < xxxiii

Interconversion, of English and Metric

units 2,3, 173, 174

of sidereal and solar time Ixxiii

tables for 164, 165

Iron, linear expansion of 170

Joule, value of I74

Kilogramme, Prototype xxxiv

equations of xl

relation to pound xxxvi, xli

Kinetic energy, dimensions of 175

of rotation of earth Ixvi

Klafter, Wiener, in terms of foot and

metre '68

Latitude, astronomical, geocentric, and re-

duced xliv

determination of Ixxvii

Latitudes and departures, table of 32-47

mode of use of table explained c

Lead, linear expansion of 170

Least squares, method of Ixxxvi

references to works on xcviii

Legendre's theorem for solution of sphe-

roidal triangles Ivil

Length, of arc of meridian , . . xlvi

of arc of parallel xlix

of equator of earth 171

of meridian circumference of earth 171

of perimeter of ellipse xxix

of Prototype Metres Nos. 21 and 27 xl

of seconds pendulum, formula for 171

table of values of i6g

Leveling, trigonometric Ixi

Line (French), value of 168

Lines, lengths of xxviii

on a spheroid Ivi

Linear measures, British xxxvii

Metric xli

tables for interconversion of. .2, 3, 173, 174

Litre xli

Logarithms, anti-, 4-place table of 26, 27

explanation of use of xcix

4-place table of common 24, 25

of natural numbers, table of 4-22

relations of different xv

series for xiv

Maclaurin's series xxii

example of xxiii

Magnetic quantities, dimensions of 175

Maps, co-ordinates for projection of (see

Co-ordinatesforprojection of maps) liii

projection of cii

Mass, of earth .' Ixv

of earth's atmosphere Ixvi

of Prototype Kilogrammes Nos. 4 and

20 xl

Mayer's formula for transit instrument Ixxv

Mean, arithmetic and geometric xiii

Mean distance of earth from sun 172

Mean error, definition of Ixxxiv

computation of xcv

Mean time Ixxii

table for conversion to sidereal time 164

Measures xxxiv

of capacity, British xxxviii

Metric xli

of length, British xxxvij

Continental 168

Metric xli
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Measures (continued),

of surface, British xxxviii

Metric xli

tables for interconversion of . .2, 3, 173, 174

Mechanical equivalent of heat 172

Mechanical units, dimensions of 175

Mensuration xxviii-xxxiii

Mercury, density and cubical expansion of. . 172

Meridian, arcs of terrestrial xlvi

table of lengths of 78-80

circumference of earth xlix, 171

Method of least squares Ixxxvi

Metre, Prototype xxxiv

equations of Nos. 21 and 27 xl

relation to British yard xxxvi, xli

Metric system xl

Mile, Austrian 168

British (statute) xxxvii

Danish, German sea, Netherlands, Nor-

wegian, Prussian, Swedish 168

Nautical 168

Modulus of common logarithms xv

Moivre's formula xvi

Moment of inertia of mass, dimensions of . . . 175

Moments of inertia of earth Ixvi

Momentum, dimensions of 175

Napierian base (of logarithms) xiv, 171

Napierian logarithms. xiv

Napier's analogies xx

Natural logarithms xiv

Nautical mile, table of equivalents in statute

miles 168

Numerical constants 171

Ohm, dimensions of 175

Palm, length of, English xxxviii

Netherlands 168

Parallel, arcs of terrestrial xlix

table of lengths of 81-83

Pendulum, length of seconds 171

table of lengths of 169

Perch (of masonry) volume of xxxix

i erimeter, of circle xxviii

of ellipse xxix

of regular polygon xxviii, xxx

Physical constants 172

Physical geodesy, salient facts of Ixv

Physical quantities, dimensions of 175

Platinum, linear expansion of 170

Platinum iridium, linear expansion of 170

Polyconic projection of maps liii

graphical process of, explained cii

Polygons, regular, areas of xzx

lengths of lines of xxvii

Potential (electric), dimensions of 175

Pothenot's problem Ixiv

Pound, imperial, avoirdupois xxxiv

Power, dimensions of 175

Pressure, of atmosphere 172

Prism, volume of xxxii

Probable error, definition of Ixxxiv

computation of xcv

Projection of maps liii, cii

Prototype Kilogrammes and Metres xxxiv

equations of x]

Quadrilaterals, of earth's surface, areas of 1

tables of areas of 142-159

Quantity, of electricity, dimensions of 175

Radii, of curvature xiv

Radius of curvature, of meridian, table of

logarithms of 48-56

of section normal to meridian, table of

logarithms of S7-6S
of section oblique to meridian, table of

logarithms of 66, 67

Radius vector of earth's surface 1

Rate of working (power), dimensions of 175

Ratio, of pound to kilogramme xxxvi

of specific heats of air 172

of yard to metre xxxvi

Reciprocals, of natural numbers, table of. .4-22

Reduced latitude xliv

Reduction to sea level of measured base line. Ixiv

References, to works on astronomy Ixxxii

to works on geodesy Ixvi

to works on the theory of errors xcviii

Refraction, astronomical, table of 161

example of computation of civ

coefficients of terrestrial Ixiii

Right ascension Ixxii

Rode, Danish 168

Ruthe, Prussian, Norwegian 168

Sagene, Russian 168

Sea level (see Geoid), reduction of measured

base line to Ixiv

Sea surface, area of Ixv

Secondary triangulation, differences of lati-

tude, longitude, and azimuth in Ix

Series, binomial xiv

logarithmic xiv

of Maclaurin and Taylor xxii

trigonometric xvii

Sidereal day and year, length of 172
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Sidereal time Ixxii

table for conversion to mean time..165
Signs, of trigonometric functions xv
Silver, linear expansion of 170
Sines, table of natural 28, 29

explanation of use of c

Solar time Ixxii

table for conversion of mean solar

to sidereal 164

Solution, of plane triangles xviii

of spherical triangles xx

of spheroidal triangles Ivii

Span, length of xxxviii

Specific heat of air 172

Sphere, equal in surface with earth lii

equal in volume with earth lii

surface of xxxi

volume of xxxii

Spherical excess (see Spheroidal excess) . . . . 1viii

Spheroid, representing the earth xliii

surface of xxxi

volume of xxxiii

volume of earth's Ixv

Spheroidal excess Iviii

example of computation of ci

Spheroidal triangle Ivii

Square roots, table of 4-22

Squares, table of 4-22

Standards, of length and mass xxxiv

Steel, linear expansion of 170

Stire xli

Stress, dimensions of 175

units of 173. '74

Sums, of arithmetic and geometric progres-

sion, and special series xiii

Surfaces (see Areas) xxix

Surface measures, British xxxviii

Metric xli

tables for interconversion of. . .2, 3, 173, 174

Surface, of continents Ixv

of earth's spheroid lii

of oceans 'xv

of sphere and spheroid xxxi

Surveyor's chain, length of xxxvni

Table for conversion of arc into time 162

conversion of mean into sidereal time .
. 164

conversion of sidereal into mean time. .165

conversion of time into arc io3

determination of heights by barometer. .
160

interconversion of British and Metric

units 2, 3, 173. 174

interconversion of nautical and statute

168
miles

Table of acceleration of gravity and derived

quantities
169

Table of {continued).

antilogarithms, 4-place 26, 27

areas of quadrilaterals of earth's surface

of 10° extent in latitude and longi-

tude 142
1° extent in latitude and longi-

tude 144, 145
30' extent in latitude and longi-

tude 146-148

15' extent in latitude and longi-

tude 150-154
10' extent in latitude and longi-

tude 156-159

areas of regular polygons xxx

circumference and area of circle 23

constants, astronomical 1 72

geodetical 171

numerical 171

for interconversion of English and

Metric units 2, 3, 173, 174

Continental measures of length 168

co-ordinates for projection of maps—
scale 1/250000 84-91

scale 1/125000 92-101

scale 1/126720 102-109

scale 1/63360 110-121

scale 1/200000 122-131

scale 1/80000 132-141

departures and latitudes 32-47

dimensions of physical quantities 175

errors of interpolated values from nu-

merical tables Ixxxvi

expansions (linear) of principal metals. . 170

formulas for solution of plane triangles, .xix

fractional change in number due to

change in its logarithm 170

latitudes and departures 32-47

lengths of arcs of meridian 78-80

of arcs of parallel 81-83

of 1° of meridian i65

of 1° of parallel 167

linear expansions of metals 170

logarithms, 4-place 24, 25

anti-, 4-place 26, 27

of factors for computing spheroidal

excess 68, 6g

of factors for computing differences

of latitude, longitude, and azi-

muth 70-77

of meridian radius of curvature . . 48-55

of radius of curvature of normal

section S^^S
of radius of curvature of oblique

sections 66, 67

mean astronomical refraction 161

measures and weights—
British, of capacity xxxix
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Table of {continued).

British, of length xxxviii

British, of surface xxxviii

British, of weight xxxix

Metric xli

tables for interconversion of

A 3. 173. "74

natural cosines 28, 29

natural tangents 3°) 3'

radii of curvature, logarithms of, for

meridian section 48-55

for normal section 56-65

for oblique section 66, 67

reciprocals, squares, cubes, square roots,

cube roots, and logarithms of natural

numbers 4—22

refraction, mean astronomical 161

signs of trigonometrical functions xv

values for computing areas and dimen-

sions of regular polygons xxx

for computing perimeter of ellipse xxix

of log i (i— 2m) and log (1 — m)

used in trigonometric leveling . . .Ixil

weights and measures (see Taile of

measures and weights) 2, 3, 173, 174

Table, traverse (see Traverse table) 32-47

Tangents, natural, table of 30, 31

use of table explained c

Taschenbuch, Des Ingenieurs xcix

Taylor's series xxii

Temperature, absolute zero of 172

of freezing mercury 172

Theory of errors Ixxxiii-xcviii

references to works on xcviii

Thermal conductivity, dimensions of 175

of air 172

Three-point problem Ixiv

Time, determination of Ixxiv

equivalents in arc, table of 163

example of use of table civ

interconversion of sidereal and solar,

tables for 164, 165

Tin, linear expansion of 170

Toise, value in feet and metres 168

Ton, long and short xxxix

Tonne 173, 174

Tonneau xli

Trapezoid, area of xxix

Traverse table 32-47

explanation of use of c

Triangles, plane, solution of xviii

Triangles {continued).

spherical, solution of xx

spheroidal, solution of Ivii

Triangulation, primary and secondary, differ-

ences of latitude, longitude, and azimuth

in Iviii-lx

Trigonometric functions, of one angle xv

of two angles '. xvi

series for xvii

Trigonometric leveling Ixi

Units, British System xxxvii

C. G. S. System xlii

Metric System xl

standards of length and mass xxxiv

tables for interconversion of British and

Metric 2, 3, 173, 174

Useful formulas xiii-xxvli

Vara, Mexican and Spanish 168

Velocity, dimensions of 175

of light and sound 172

Versta, Russian 168

Vertical section curve on spheroid Ivi

Volt, dimensions of 175

Volume, of earth Ixv

of solids xxxii

Weight, of distilled water 172

Weights and measures (see Measures and
weights), tables for interconversion of

British and Metric 2, 3, 173, 174

Werst, Russian 168

Work, dimensions of 175

Wright, Prof. T. W., treatise cited xcviii

Yard, imperial xxxiv

ratio of, to metre xxxvi, xxxvii

Zachariae, G., treatise cited xlvi

Zenith distances, use of, in trigonometric

leveling Ixi

Zenith telescope, use of Ixxix

Zero, of absolute temperature 172

Zinc, linear expansion of 170

Zones, of earth's surface, area of 1










